
Computer Networks 57 (2013) 3165–3177
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
GPU-accelerated name lookup with component encoding q
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comnet.2013.07.006

q This work is supported by NSFC (61073171), Tsinghua University
Initiative Scientific Research Program (20121080068), 863 project
(2013AA013502).
⇑ Corresponding author. Tel.: +86 1062773441.

E-mail address: liub@tsinghua.edu.cn (B. Liu).
Yi Wang, Huichen Dai, Ting Zhang, Wei Meng, Jindou Fan, Bin Liu ⇑
Tsinghua University, Beijing 100084, China

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 25 August 2013

Keywords:
Name lookup
GPU
Name component encoding
Named data networking
Named Data Networking (NDN) aims at redesigning the current Internet: using names to
identify the wanted contents instead of using IP addresses to locate the end hosts, with
the goal of substantially improving the data retrieval efficiency. Different from IP routers,
NDN routers forward packets by names. An NDN name is composed of a number of length-
variable components, causing the name to be tens or even hundreds of characters in length.
Meanwhile, NDN routing tables could be several orders of magnitude larger than the cur-
rent IP routing tables. This kind of complex name constitution plus the huge-sized name
table makes wire speed name lookup an extremely challenging task.

In pursuit of overcoming this challenge, we propose a Name Component Encoding (NCE)
solution that assigns codes (integers) to name components. Along with an elaborate one-
dimensional transition array and a local code allocation algorithm, NCE performs every
node transition by a single memory access to boost lookup speed besides greatly compress-
ing storage space. Moreover, we implement the name lookup engine on a GPU platform to
exploit GPU’s massive parallel processing power; furthermore, pipeline and CUDA multi-
stream techniques are applied to GPU to increase lookup throughout while reducing
lookup latency. Experimental results demonstrate that, under the constraint of 100 ls
latency, our GPU-based name lookup engine can achieve 51.78 million searches per second
on a name table containing 10 million prefixes. NCE also saves 59.57% memory cost com-
paring with the character trie and supports around 900K prefix insertions and 1.2 million
prefix deletions per second.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The current Internet, with its core ideas shaped between
the 1960s and 1970s, has already been developed for
around 50 years. Centered on IP addressing, the Internet
was designed for conversations between communication
endpoints and facilitated ubiquitous interconnectivity.
The Internet was successful when providing effective,
global-scale communications, which was unique and
groundbreaking. However, it is now overwhelmingly used
for content distribution, which has been gradually shown
to be a poor match between the Internet architecture and
today’s dominant use – information/content-intensive
retrieval and sharing. Internet usage exhibits a content-
centric rather than an IP address-centric property.
This kind of functionality transition from host-to-host
conversation to content distribution calls for a brand new
Internet architecture, and such an idea has also been
observed by [1–4].

To address this transition, the clean slate Named Data
Networking (NDN) [5], an instance of the Content-Centric
Networking (CCN) [1] paradigm, was recently proposed
for this purpose and widely regarded as a promising
architecture for future networks. Quite different from the
current IP-based network, this new paradigm is character-
ized by name-based routing and forwarding. NDN names,
used to route and forward packets, have hierarchical

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2013.07.006&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2013.07.006
mailto:liub@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.comnet.2013.07.006
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


3166 Y. Wang et al. / Computer Networks 57 (2013) 3165–3177
structure and variable-length. This content name-based
longest prefix match (LPM) presents difficulties when
implementing wire speed lookup: (1) the content names
are far more complex than the IP addresses. Unlike the
fixed-length IP addresses, the content names have variable
and unbounded length which may be composed of tens, or
even hundreds of characters. Thus, an NDN name is much
longer than an IPv4/IPv6 address, making the individual
name search a time-consuming operation; (2) An NDN
name table could be several orders of magnitude larger
than a today’s IP forwarding table. As of August 2013,
there have been 716,822,317 websites reported [6], lead-
ing to an NDN name table containing up to tens of millions
of name prefixes even if we adopt a hierarchical name
structure, while the current largest IP routing table has less
than 500K IP prefixes. Further, given that NDN name aggre-
gation can only happen in a unit of a component, ineffi-
cient prefix aggregation could be expected. (3) High
update rate. In addition to the changes of network topol-
ogy and routing policy, an NDN router has to handle fre-
quent updates brought by content publishing and
deletion, which makes name prefix updates much more
frequent than IP prefix updates in today’s Internet. Defi-
nitely, the designed name lookup mechanism should sup-
port fast update operations including insertion and
deletion while keeping fast name lookup speed.

Facing these challenges, the goal of this paper is to ex-
plore effective solutions to achieve high lookup throughput
while greatly compressing the name table’s memory occu-
pation and supporting fast name prefix updates for NDN.
To reach the above goal, encoding the name components
to integers is potentially a promising solution to reduce
the memory occupation of a name table. Compared with
the components, the codes are smaller in size and faster
for searching. Obviously, an encoded name table will have
a more constrictive data structure with less memory size
while boosting the search speed.

Ahead of the table lookup, we need to first encode the
incoming names in a real-time fashion and this will inevita-
bly incur extra cost. Our study [7] shows that both encoding
the arrival names and searching the codes against the en-
coded name table are computation-intensive tasks. This
naturally makes us think of using Graphic Processor Unit
(GPU) to speed up the name lookup operation. GPU offers
extremely high thread-level parallelism with hundreds of
slim cores [8,9]. Its data-parallel execution model fits nicely
with parallel name lookup to achieve high throughput.
However, GPU’s massive parallel processing power can only
be fully exploited by loading a large amount of input names
in batches, and this usage will potentially lead to a longer
per-packet delay because of accumulating the arrival names
for batch processing. In this paper, we also strive to elabo-
rate the GPU implementation to balance the lookup
throughput and the search latency. Especially, we make
the following major contributions:

1. We propose an efficient encoding method, i.e., Name
Component Encoding (NCE), to assign codes (integers)
to name components. Along with an elaborate one-
dimensional transition array and a local code allocation
algorithm, NCE performs every node transition by a
single memory access to boost lookup speed, and com-
presses storage space. Compared with the traditional
character trie, NCE can achieve a lookup speedup of 5
times, while saving around 59.57% memory space.

2. We combine the NCE scheme with GPU’s massive paral-
lel processing power to implement a GPU-based name
lookup engine, in which CPU and GPU are virtually con-
figured as the control plane and data plane of a router,
respectively. The CPU is used to build specially designed
data structures off-line from the NDN name table and
loads them into the data plane, while GPU is responsi-
ble for encoding the incoming names on-line and
searching against the name table. Besides this, the
CPU executes the name prefix updates and downloads
them to the device memory of the GPU incrementally
to support fast insertions and deletions.

3. We take the advantage of pipeline and CUDA stream
techniques to effectively reduce the name lookup
latency while keeping high throughput by fully exploit-
ing the parallel property of the GTX590 GPU. Intensive
experiments show that, under the strict latency con-
straint of 100 ls, our GPU-based name lookup engine
can achieve 51.78 MSPS throughput, equivalent to
103.56 Gbps wire speed lookup (assuming the average
NDN packet size is 250 bytes).

The rest of this paper is organized as follows: the back-
ground and challenges of NDN name lookup are described
in Section 2. Section 3 introduces the idea of name compo-
nent encoding, as well as its algorithm and data structure.
Section 4 optimizes NCE’s lookup latency. Section 5 pre-
sents the experimental results. After surveying the related
work in Section 6, we conclude our work in Section 7.
2. NDN name lookup: background and challenges

2.1. Packet forwarding process

There are two kinds of packets in NDN: Interest packet
and Data packet [5]. As shown in Fig. 1, the forwarding pro-
cesses in a router’s data plane for these two kinds of pack-
ets are different. Interest packet forwarding: (1) When a
router receives an Interest packet, it first searches the con-
tent name against the Content Store (CS) table (exact
match). If hit, this means the router has stored the required
content, then a Data packet with the required content is re-
turned; (2) If not hit, the router looks up the content name
against the Pending Interest Table (PIT). If matched, it
means that the router has received the Interest packet(s)
requesting the same content earlier, but not responded
yet. Then, the information of the arrival port from which
the Interest packet comes is appended to the correspond-
ing PIT entry, and this Interest packet is discarded and
would not be forwarded to upstream routers; (3) If not
matched in the PIT, the router looks up the content name
against the Forwarding Information Base (FIB), i.e., name
table, which complies with the Longest Prefix Match
(LPM). If this name matches its LPM prefix in the FIB, the
router will forward this Interest packet to the correspond-
ing next-hop port, and create an associative PIT entry;



Content
Store (CS)

Drop Interest Packet
Return Data

Interest
Packet

Forward

Add Request Port
Data Packet 

Process

Interest Packet 
Process

Forward Data

Cache Data

Data
Packet

Drop Data

Create PIT Entry

Delete PIT Entry

Pending Interest 
Table (PIT)

FIB

Pending Interest 
Table(PIT)

Content
Store (CS)

Longest Prefix Match

Exact Match

Miss

Matched

Fig. 1. NDN forwarding process.

1 The lookup latency is defined as the time interval between inputting
the name to and outputting the next-hop port from the search engine.

Y. Wang et al. / Computer Networks 57 (2013) 3165–3177 3167
otherwise, it will discard this Interest packet. Data packet
forwarding: When a Data packet arrives at a router, the
router looks up the content name against the PIT based
on exact match [1,10]. If matched, the router will forward
this Data packet to the port(s) recorded in the matched PIT
entry; otherwise, it will discard this Data packet.

2.2. Name lookup challenges

Among the above forwarding processes, CS and PIT
lookups are exact match, while name lookup against the
FIB is Longest Prefix Match. LPM will not only complicate
the name lookup, but also create the performance bottle-
neck of packet forwarding. In this paper, we focus on wire
speed name lookup against the FIB.

In order to implement high-speed NDN packet forward-
ing against large-scale FIBs, an NDN name lookup engine
should satisfy the following requirements.

1. Wire speed name lookup: Nowadays, OC-768 (40 Gbps)
links are increasingly deployed in the Internet back-
bone, and OC-3072 (160 Gbps) technology is emerging
on the horizon of the Internet. To implement NDN rout-
ing and forwarding in an increasingly large-scale, high-
speed Internet, name lookup engines have to keep up
with the accelerating wire speed.

2. Memory efficiency: An NDN router’s FIB can contain as
many as tens of millions of name prefixes, or even
more; and each name prefix consists of tens, or even
hundreds, of characters, resulting in large FIBs that have
tens of gigabytes. To be practical, name lookup engines
need to implement name lookup against such large-
scale FIBs with reasonable memory occupation.

3. Fast updates: In addition to network topology changes
and routing policy modifications, NDN routers have to
handle one new type of FIB update — when the contents
are published/deleted, the name prefixes need to be
inserted into or deleted from the FIBs, which makes
the updates of the FIBs much more frequent than that
of today’s Internet. Fast FIB update, therefore, should
be well handled, especially for large-scale FIBs.

4. Scalability: The growth rate of NDN FIB size not only
depends on the number of routers and end hosts, but
also on the number of contents, which grows much
faster than the number of routers and end hosts. There-
fore, satisfying the above performance requirements
represents a much tougher challenge than the scalabil-
ity issue in the traditional IP lookup.

5. Latency: Generally, a high-end router should achieve
low packet forwarding delay. Typically, an ISDN switch
forwards a voice slot with no more than 450 ls. Based
on this reasoning, we expect that the lookup latency1

should be less than 100 ls. Thus it will be a challenge
to achieve low latency while keeping the high speed
throughput, especially when we implement the name
lookup engine on GPU’s platform.

In summary, compared with the traditional IP lookup,
NDN name lookup is a much more challenging task. Practi-
cal name lookup engine design and implementation, there-
fore, requires substantial innovation and re-engineering.
3. Name component encoding: algorithm and data
structure

This section introduces the Name Component Encoding
(NCE) algorithm and its corresponding data structures. In
Section 3.1, a name table is organized as a Name Compo-
nent Trie (NCT), which is of the component granularity
and reduces memory space substantially compared with
the name character trie. Then, in Section 3.2, we encode
each component in the Name Component Trie to an integer
code, making the Name Component Trie into an Encoded
Name Component Trie (ENCT). In Section 3.3, ENCT is fur-
ther reconstructed as a one-dimensional transition array,
where a transition from one node to its child node on the
ENCT is reached by a single memory access, which
markedly increases the lookup speed. To further reduce
the memory cost of ENCT, in Section 3.4, we improve the
way of assigning codes from the Global-code allocation
mechanism to the Local-code allocation mechanism. Given
that the coded trie solution asks for encoding the content
names in real-time, in Section 3.5, we optimize the data
structure of the Component Hash Table to achieve fast



Fig. 2. Name component trie.

3168 Y. Wang et al. / Computer Networks 57 (2013) 3165–3177
component-code mapping while reducing memory con-
sumption. At last, we describe the incremental update
scheme of NCE in Section 3.6.

3.1. Name Component Trie (NCT)

NDN names are of component granularity. By obeying
the LPM rule, a prefix match can only happen at the end
of a component. For instance, a name /com/google can only
be matched after completely matching two components:
com and google.

Based on the above basic properties, we can represent
the names in the FIB using a Name Component Trie, which
is shown in the right part of Fig. 2. The transition condition
from one node to another depends upon completely
matching a component. For example, the search path for
/com/google/orange is 0 ? 1 ? 2, where the transitions
0 ? 1 and 1 ? 2 correspond to match the components of
com and google, respectively. Since component orange does
not meet any transition condition, the lookup process ter-
minates at the prefix of /com/google.

Obviously, if we do not consider the hierarchy of names
and treat them as flat strings, names can be represented
traditionally by a character trie, here we name it as Tradi-
tional Character Trie (TCT). Compared with TCT, NCT not
only reduces the number of nodes to save memory space,
but also decreases the depth of the trie to accelerate lookup
speed. For the name table illustrated in Fig. 2, there are
only 13 nodes totally in NCT with a depth of 3, while TCT
contains 56 nodes with a depth of 13.

3.2. Basic name component encoding

Compared with TCT, NCT notably reduces the number
of nodes and the depth of the trie. However, a transition
is matched only when a whole component is matched. In
fact, this kind of complicated work can be released by
encoding the components. In NCT, the edges (transitions2)
leaving a node represent the variable-length components.
Suppose that all the transitions leaving from the same node
form a transition set. If a transition set is organized as a list,
the matching process will traverse the list to find the
matched component, and the time complexity will be
O(NW), where N is the length of the list and W is the average
2 In this paper, edge and transition have the same meaning, and we use it
according to the context.
number of characters over all the components in the transi-
tion set. If we adopt a hash table to store the transition set,
the time complexity of matching components can be im-
proved to O(W⁄(1 + a/2)) [11] when chaining is used to re-
solve conflicts, but the memory space will be increased by
a factor of 1/a, where a is the load factor of the hash table.

Instead, we propose to assign a code to each compo-
nent, and the transitions in the NCT are then turned to
be represented by the codes. We name this solution Name
Component Encoding. NCE first employs a hash table to
keep track of all the actual components in the NCT, and as-
signs each component a code according to our code alloca-
tion algorithms which are depicted in Section 3.4. Then
NCE transforms the NCT to the Encoded Name Component
Trie to increase lookup speed and reduce memory con-
sumption. For instance, for the NCT in Fig. 2, after encod-
ing, the corresponding hash table and ENCT are
illustrated in Fig. 3.

When looking up a name, say /com/google/orange, we
first decompose the name into three components: com,
google, orange; then we encode them by looking up each
component for a code in the hash table. In this example,
the encoding results are: com = 3, google = 6 and
orange = �1 (�1 means that orange does not match any
component in the hash table). At last, the code string /3/6
is used to look them up against the ENCT. Finally, the
matching process terminates at node 2, and a pointer to
this FIB entry is returned.
3.3. Transition array for ENCT

ENCT can further be improved by the Encode Transition
Array (ETA), which directly stores all the transitions of an
ENCT in a one-dimensional transition array, and the node
information is implied in the ETA element as well. The
ETA markedly improves lookup speed, since it enables a
transition on the ENCT to be implemented by only a single
memory access.

Each element in the ETA has two fields: {code, offset}. A
code is an integer that is assigned to the corresponding
component; and an offset stands for the address of the
ETA. As illustrated in the left part of Fig. 3, ETA[0]–ETA[4]
store the transitions of Node0. The offset of ETA[3], which
is 5, indicates that the transitions of the next node (Node1

in this case) are stored beginning at ETA[5]. Formally, one
specific transition Tij (the edge from Node Ni to Node Nj) of
Node Ni is stored in ETA at the location offseti + codeij,



Fig. 3. Name component encoding solution.

Y. Wang et al. / Computer Networks 57 (2013) 3165–3177 3169
where offseti is the offset (relative to the first element of
ETA) of Nodei, and codeij represents the code value of Tij.

Here, the ETA needs to store the code values to ensure
the correctness. For example, ETA[5] in the left part of
Fig. 3 stores a transition (with its code = 0) of node1. If
the ETA has no code information, a transition of node0 (off-
set0 = 0) with a code = 5 will point to the 5th position in the
ETA, which will cause an error. This problem can be for-
malized as if a + b = 5) a = ?, b = ?. Obviously, there is
more than one answer. Consider a more illustrative exam-
ple: /com/acm is encoded to /3/0, and /apple is encoded to /
5. Their search paths are 0 ? 3 ? 5 and 0 ? 5, respec-
tively. At last, /com/acm and /apple both reach the same
node Node7. Consequently, an error occurs. With the help
of code information, such an error can be avoided. The cor-
responding search path of /com/acm is 0 ? 3 ? 5 remains
unchanged, while the search path of /apple is 0 ? NULL.

3.4. Code allocation algorithm

The coding methodology directly influences the size of
the ETA. Therefore, we design the Local-code allocation
mechanism to reduce the memory consumption. To clarify
our encoding mechanism, we first present the following
three definitions.

Definition 1. A component (edge) Ci belongs to a node Nj

when Ci leaves Nj for another node in the trie.
Definition 2. Original Collision Set (OCS) is a set of com-
ponents, and all the components belong to a given Node
Nj. Different components in an OCS should be encoded
with different codes to avoid collision.
Definition 3. If a component belongs to multiple OCSes,
these OCSes form a new set, called Collision Set (CS), i.e.,
each OCS is an element of CS, and CS is a set of set.
3.4.1. Global-code allocation mechanism
The simplest approach, Global-code allocation mecha-

nism (global encoding for short), assigns each distinct
component a unique code, i.e., a component and a code
has a one-to-one mapping relationship. We can conclude
that: Ci – Cj(i – j)) Ei – Ej, here Ei is the code allocated
to Ci. The Global-code allocation mechanism will cause
ETA’s memory space expansion. For example, in the left
part of Fig. 3, the Node2’s offset is 13, and its transitions oc-
cupy ETA[13]–ETA[15]. However, Node2 only has one tran-
sition and is stored in ETA[15], thus 66.7% memory is
wasted. Global encoding, though easy to implement, re-
quires OðN2

c Þ space complexity (Nc is the number of distinct
components). Therefore, global encoding is insufficient to
support large-scale FIBs.

3.4.2. Local-code allocation mechanism
To address the problem of large memory consumption

of global encoding, we propose the Local-code allocation
mechanism (local encoding for short). As mentioned above,
an OCS is a set of all the transitions leaving from the same
node. Hereby, the transitions belonging to an OCS should
be assigned different codes; while the different compo-
nents belonging to the different OCSes can share the same
code. In other words, Cij 2 OCSi, Cik 2 OCSi, j – k) Eij – Eik.
If Cij 2 OCSi, Ckm 2 OCSk, Cij – Ckm, i – k, then Eij is allowed
to be equal to Ekm. For instance, in the right part of Fig. 3,
com belongs to OCS0 and apple belongs to OCS1. They can
both be encoded as 1, while still guaranteeing the
correctness.

Local encoding is equivalent to the function f: {OCSi -
� Cij ? Eij}, where�means Cartesian product. f implies that
with both the node number and the component informa-
tion, the codes can be correctly assigned to the components.
However, the name lookup engine can only get the compo-
nents of a content name, rather than the lookup state (node)
information. Therefore, the code of Ci should be consistent
with multiple OCSes to support encoding only based on
the component itself without the node information. For



3170 Y. Wang et al. / Computer Networks 57 (2013) 3165–3177
example, in the right part of Fig. 3, acm is assigned the same
code 0 in all the OCSes: OCS1, OCS8 and OCS11.

Assigning a code to a component is not an easy task. In
fact, finding an encoding scheme that minimizes the mem-
ory requirement of the ETA is an NP hard problem. There-
fore, we utilize the following greedy algorithm to
implement the local encoding:

� Step 1, we build the NCT based on the name table.
� Step 2, we traverse the NCT to build a hash table for all

the distinct components, and keep track of the informa-
tion to which node a component belongs (i.e., belongs
to which OCS).
� Step 3, we transform the component hash table into a

component array which is sorted in a descending order
based on the number of OCSes that a component Ci

belongs to. If the numbers of OCSes are equivalent,
the component array is sorted in an ascending order
based on the number of transitions that the OCS
contains.
� Step 4, we encode the component Ci in the component

array from i = 0 by selecting the smallest code as the
code of Ci among the OCSes that Ci belongs to.

3.4.3. False positive
Given that the different components Ci and Cj can share

the same code, i.e., Ei = Ej, merely using code is inadequate
to prevent false positives. For example, in the right part of
Fig. 3, /com/google/news and /com/google/acm are encoded
as the same code sequence /1/2/0. In this way, /com/goo-
gle/acm is matched with the prefix /com/google/news, while
the correct one is /com/google.

In order to avoid this kind of error, we revise the infor-
mation that an ETA element contains from {Code, offset} to
{CS, offset}, where CS (refer to Definition 3) field stores the
ID of the CS that this component belongs to. If Ci only
belongs to one node (OCS), we set CSi=OCSi; otherwise,
CSi = max{max{CSj},max{OCSk}} + 1. Meanwhile, the origi-
nal Mapping Table entry {component ? Code} is revised
to be {component ? hCS, Codei}. In this way, the encoding
result of /com/google/acm is /h0, 1i/h1, 2i/h12, 0i, which has
the search path: /h0, 1i/h1, 2i. Therefore, the correct longest
prefix /com/google is found.

The following two Theorems prove that the Local-code
allocation mechanism keeps the correctness of longest pre-
fix match.

Theorem 1. The Local-code allocation mechanism, along
with the ETA that implements the ENCT, preserves the trie
property that a child node can only be directly reached by its
parent node, if the transfer condition holds.
Fig. 4. Hash table data structure: component hash table.
Proof 1. Let Oi be the offset of Nodei, the component Ci’s
corresponding code and collision set are Ei and CSi, respec-
tively. Ci matches the transition leaving from Nodei to
Nodei+1. Assume that Ci – Cj and Nodei+1 = Nodej+1, according
to the Local-code allocation mechanism, we have Oi+1 = Oj+1,
CSi = CSj, Oi+1 = Oi + Ei, Oj+1 = Oj + Ej. If Ei – Ej) Oi – Oj

) CSi – CSj, contradicts with CSi = CSj, therefore Ei = Ej. If
Ei = Ej) Oi = Oj and Ci = Cj) Nodei = Nodej. h
Theorem 2. The Local-code allocation mechanism keeps
the correctness of longest prefix match.
Proof 2. Suppose that two names A = Ca1, . . ., Cai, . . ., Cam

and B = Cb1, . . ., Cbj, . . ., Cbm0, their prefixes are PrefixA = Ca1,
. . ., Cai and PrefixB = Cb1, . . ., Cbj, respectively. Moreover, Pre-
fixA – PrefixB, but A and B match the same prefix Oai+1 = -
Obj+1. Suppose two names A and B are encoded to two
code sequences Ea1, . . ., Eai, . . ., Eam and Eb1, . . ., Ebj, . . ., Ebm0.
The search paths of prefix A and B are Oa1, . . ., OaiOai+1 and
Ob1, . . ., ObjObj+1, respectively. Because Oai+1 = Obj+1, based
on Theorem 1, we arrive at Oai = Obj and Cai = Cbj) Oa1 = -
Ob1 and i = j) Oak = Obk,Cak = Cbk,0 6 k 6 i, i.e., PrefixA = Pre-
fixB, contradicts with PrefixA – PrefixB. h
3.5. Component hash table

In the NCE scheme, the name lookup engine first
decomposes the content name into components and en-
codes the components into codes; then it looks up the
codes against ENCT to find the LPM prefix and forwarding
port. The components encoding process and the codes
lookup process both contribute search time to the name
lookup process. The ETA and the Local-code allocation
mechanism effectively accelerate lookup speed and de-
crease memory space.

Here, we adopt a hash table to store the mapping table
to speed up the encoding operations. Though multiple
components in a name can be encoded in parallel, the
encoding speed of a single component directly influences
the throughput of the entire lookup engine. To achieve fast
mapping, the hash value of a component is calculated by
the BKDR [12] hash function, and the hash conflicts are re-
solved by a chaining, as illustrated in Fig. 4. The Compo-
nent Hash Table (CHT), which maps a component to a
hCS, codei pair, is composed of two parts: the index table
and the content table. The index table stores the index of
a component’s profile, which is stored in the content table.
A content table entry has five fields: {CS, code, length, com-
ponent, next}. CS and code have been introduced above;
length represents the number of characters of the compo-
nent, and the following {(length � 1)/4 + 1} integers store
the component (an integer is 4 bytes); next is a pointer that
stands for the next position in the content table for the dif-
ferent components which have the same hash value.



Table 1
Hardware configuration.

Item Specification

CPU Intel Xeon E5645 � 2 (6 cores, 2.4 GHz)
GPU NVIDIA GTX590 (2 � 512 cores, 2 � 1536 MB)
Motherboard ASUS Z8PE-D12X (INTEL S5520)
RAM DDR3 ECC 48 GB (1333 MHz)

Y. Wang et al. / Computer Networks 57 (2013) 3165–3177 3171
Fig. 4 illustrates the lookup process of apple: (1)
compute the hash value of apple as the address of the index
table, and access that entry to obtain the address (of the
content in this example Table); (2) access the content table
from the address of 0. The length of apple is 5, while the
length of the component stored in the current position is
3 — they do not match; then we jump to position 5
(indicated by the next pointer), apple matches the compo-
nent in current position; finally the output is CS = 1,
Code = 1.

The data structure of a hash table brings the following
benefits:

1. The separation between the index table and the
content table enables us to allocate a relatively
large index table to reduce collision rate, while
costing a small storage overhead. Moreover, we
can re-construct the index table to dynamically
re-construct the hash table based on the load fac-
tor, without modifying the content table.

2. The content table can compactly store the variable-
length keys (components).

3. The hash table is represented by arrays, which are
easy to implement on the GPU platform.

3.6. Update

There are two types of name prefix updates: deletion
and insertion, which are both easy to handle with our de-
sign. We first update the NCT in the control plane (CPU);
and then incrementally deliver the updating results to
the ETA in the data plane (GPU).

3.6.1. Delete
Suppose that we want to delete a prefix C1, . . ., Cj, . . ., Ck.

The steps are as follows: (1) First, we find this prefix in the
NCT and record the components (supposed to be Cj, . . ., Ck)
and nodes which need to be deleted; (2) Second, we search
the components in the CHT to obtain the code string E1, . . .,
Ej, . . ., Ek of the components C1, . . ., Cj, . . ., Ck; (3) Third, we
delete the corresponding transitions in the ETA, while
deleting the edges and nodes in the NCT. If a component
Cm no longer exists in the NCT after deletion, we delete
the corresponding entries of Cm in the CHT.

3.6.2. Insert
Suppose prefix C1, . . ., Cj, . . ., Ck is inserted into the name

table. The operations are as follows: (1) First, we insert the
prefix into the NCT. Suppose that the added components
are Cj, . . ., Ck; (2) Second, we insert Cm(j 6m 6 k) into the
CHT. If the CHT does not store these components, an entry
for Cm is added in the CHT. Otherwise, we fetch the corre-
sponding code Em of Cm, and judge whether this Em con-
flicts with the existing codes in the OCS to which Cm

belongs. If not, we do nothing; otherwise, all the influenced
nodes will be re-encoded; (3) Third, all the Em(j 6m 6 k)
are inserted into the ETA. If the entries are occupied, we
move all the transitions belonging to this node to a new
position, and update the offset value of its parent node;
otherwise, we store the Em in the available entries.
4. Implementation

In this section, we present the implementation details of
our GPU-based name lookup engine, as well as the optimiza-
tion strategies used to boost the lookup performance,
e.g. throughput and lookup latency. First in Section 4.1, we
introduce the hardware platform, operating system and
development tools with which we implement our name
lookup engine. Then in Section 4.2, we give the framework
of our GPU-based name lookup engine. Finally, in Section 4.3,
we describe the workflow of our name lookup engine.
4.1. Platform, environment and tools

Our GPU-based name lookup engine is implemented on
a commodity PC with an NVIDIA Geforce GTX590 GPU
board which contains two GPUs. In our current implemen-
tation, we only use one of them. The PC we used is
equipped with a 6-core CPU (Intel Xeon E5645x2), with
2.4 GHz clock frequency. The GPU communicates with
the CPU via a PCI Express (�16) bus. The relevant hardware
configuration is listed in Table 1.

We run the 2.6.41.9-1.c15.x86_64 version of Linux
Operating System (Fedora release 15) on the CPU of this
PC, and the x86_64-285.05.09 NVIDIA-Linux operating sys-
tem version of CUDA on the GPU.

The entire name lookup system is written in about 8500
lines of code, including the code written in C/C++ for the
CPU part and the code written in CUDA C for the GPU part.
The CPU part is responsible for preparation and prepro-
cessing of the name table, while the GPU part handles
the real per-packet name lookup, which is developed using
NVIDIA CUDA SDK 4.0.
4.2. Overall structure

As shown in Fig. 5, our GPU name lookup engine con-
sists of three major functional sub-systems: the NCE
Builder and Test Bench residing in the CPU side, and the
high-performance Kernel Search Engine responsible for all
the GPU-related tasks.

The NCE Builder serves as the control-plane of the name
lookup system. It takes a name table as its input, and out-
puts two tables used to perform the fast lookup on the
GPU. One table is the CHT, which is essentially a hash table
in which the encoding information of name components is
grouped; the other one is the ETA, which is a compact one-
dimensional table recording all the transitions in the ENCT.

The Kernel Search Engine loads the two control tables
(CHT and ETA) generated by the Builder to device memory.
Then it takes the name traces in the Test Bench as input,
and encodes each name in the name traces into codes,



Name Trace
Name Prefixes from the 

Name Table plus a suffix.

...

Name Table
Collected from DMOZ  

and our web crawler. 

GPU Kernel 
Search Engine

Name Lookup
in CHT

Codes Lookup
in ETA

Result

Name 
Component Trie

Component
Hash Table

Encoded
Transition Array

Update

PCIe

Device
Memory

Device 
Memory

Device Multiprocessors

Obtain Interface 
Information

CPU NCE Builder and Test Bench

NCE Builder Test Bench A B

reffub-Rreffub-S

Fig. 5. Framework of the name lookup system.

3172 Y. Wang et al. / Computer Networks 57 (2013) 3165–3177
searches the codes against the ETA and returns the lookup
result. Take a closer look at the Kernel Search Engine: there
are hundreds or even thousands treads running the same
instruction concurrently on the GPU. Each thread deals
with one specific name lookup request, translates the
name into codes and searches the codes against the transi-
tion array. The lookup results are temporarily stored in the
global memory of GPU, and returned to one module run-
ning on the CPU. The module will obtain the next-hop
information based on the GPU’s output.

In addition to the NCE Builder, there is also a daemon
managing the update of the name table and the corre-
sponding CHT and ETA.

Besides this, an off-line name trace generator also
serves the whole system as the synthesized traffic provider
that generates the name traces used to test the functional-
ity and performance of our GPU name lookup engine.

4.3. Workflow

Fig. 5 also presents the basic workflow in our GPU en-
coded name lookup system. Performing name lookup in a
per-packet manner is expensive because this will intro-
duce significant overhead caused by PCIe transaction, as
well as under-utilization of GPU resource. In order to
achieve high throughput and take full use of GPU, we
group packets in a batch manner. All the computations re-
lated to name lookup are done at the granularity of a batch,
not a single packet.

We divide the name lookup workflow into three steps:
pre-processing, search-processing, and post-processing.
Pre-processing and post-processing run on the CPU side
while search-processing does GPU-related tasks. Each step
works as follows:

4.3.1. Pre-processing
During this process, the CPU reads names from the in-

put name traces and stores them in the S-buffer (as shown
in Fig. 5). At the same time, names are stored in one row in
the memory if there is still available space in the current
row; otherwise they are stored in the next row. A special
number (e.g. 0x00000000) is used as the delimiter of
names in the same row. A number of rows are organized
as a batch. Once the CPU has read in enough names or
the GPU is ready for the next batch of names, the system
runs to the search-processing step and starts the next
round of pre-processing at the CPU side again.

4.3.2. Search-processing
All GPU related tasks are finished in this process. At first,

pre-processed names, as input names in the S-buffer, will
be sent to the GPU’s global memory via PCIe bus. As names
are already grouped in rows, each thread in GPU will take
one row of input names for processing. Each component is
hashed by the BKDR [12] hash function so that we can ad-
dress its code in the CHT. Once the thread has fetched the
name’s codes, it looks up the codes in the ETA till the end
or a failure. If a failure of code matching is detected, the
search of the current name is terminated and the next name
in its assigned row will be handled. The search result of each
name is recorded in the global memory. After all threads
have finished their tasks, the results are sent back to the
R-buffer in the CPU side via PCIe bus.

4.3.3. Post-processing
Once the CPU gets the results from the GPU, it will

translate the results into port numbers and sends out pack-
ets with synthetic contents to the corresponding ports.

4.4. Streaming

By dividing jobs into smaller batches, the latency will be
reduced. Inspired by this finding, we have found another
approach to dividing jobs, after carefully reviewing the
architecture of NVIDIA GPU and CUDA. In addition to



Fig. 6. An example of CUDA stream scheduling.

Y. Wang et al. / Computer Networks 57 (2013) 3165–3177 3173
thread-level parallelism, CUDA also supports task-level
parallelism, which is achieved by exploiting the CUDA
streams. With the introduction of the CUDA streams, we
successfully reduce the per-packet lookup latency, while
keeping high lookup throughput.

4.4.1. CUDA stream
According to our test, we find that besides the searching

step which is indeed kernel execution, the transmission of
names and their lookup results via PCIe bus also contrib-
utes to the per-packet latency. While waiting for names
to be transferred to the GPU’s global memory and results
to be written back to the CPU’s memory, the GPU’s compu-
tation resource is under-utilized. If we could run the kernel
while the data is transferred via PCIe bus, the latency
caused by PCIe transmission could be effectively hidden,
resulting in reduced per-packet lookup latency and in-
creased throughput.3 In order to realize this objective, we
need the help of the CUDA streams.

A CUDA stream represents an operation queue (a task
queue) in the GPU. Operations in the same CUDA stream
are executed in the order that they are inserted into the
operation queue. The CUDA streams could execute concur-
rently under the permission of hardware. For example, de-
vices with compute capability of 1.1 or above support
device overlap, which means during the execution of ker-
nel, data could also be copied between the page-locked
host memory and the device memory. (GTX590 has a com-
pute capability of 2.0.) Devices with only one copy engine
could only support one-directional data copy while devices
with two copy engines support bi-directional data copy.

4.4.2. Stream scheduling algorithm

Algorithm 1 (Stream Scheduling Algorithm).
3

ov
1:
The pipeline re
erall processing
procedure Stream Scheduling

2:
 i  1;

3:
 offset  i⁄data_size/N;

4:
 NameFetch (offset, streams[i]);

5:
 Kernel (offset, streams[i]);

6:
 for i  2 to N do

7:
 offset  i⁄data_size/N;

8:
 NameFetch (offset, streams[i]);

9:
 Kernel (offset, streams[i]);
10:
 wb_offset (i � 1)⁄data_size/N;

11:
 WriteBack (wb_offset, streams[i-1]);

12:
 end for

13:
 WriteBack (wb_offset, streams[i-1]);

14:
 end procedure
From the view of a GPU programmer, the operation
queues are ordered as the CUDA streams. However, the
practical view is totally different. There is no stream in
the hardware, but only two parallel operation engines: the
kernel execution engine and the memory copy engine. The
duces the queuing time for each name and therefore the
time for each name is reduced accordingly.
operations managed by the same engine are scheduled in
the order that they are inserted into the engine’s operation
queue. However, the dependency of operations belonging
to the same CUDA stream is still kept. Thus, we need to very
carefully use the CUDA streams. Some algorithms appearing
to be functional are likely to cause serialized execution of
streams.

We design the Algorithm 1 to schedule our lookup
tasks, where NameFetch, Kernel and WriteBack represent
name copy from CPU to GPU, kernel execution, and result
writing back from GPU to CPU, respectively. Here, N is
the number of CUDA streams used for optimization.

As shown in Fig. 6, the Kernel task of stream 2 runs (on
the kernel execution engine) in parallel with the WriteBack
task of stream 1 followed by the NameFetch task of stream
3 (both running on the memory copy engine).

5. Evaluation

5.1. Experiments setup

5.1.1. Name tables
We collect two name tables for performance measure-

ment, which include 2,763,780 entries and 10,000,000 en-
tries, respectively. For brevity, we refer to them as the ‘‘3M
name table’’ and the ‘‘10M name table’’, respectively. Each
name table entry is composed of an NDN-style name and a
next-hop port number.

5.1.2. Name traces
We generate name traces from name tables to simulate

the content names carried in NDN packets. Each name
trace is formed by concatenating a name prefix selected
from the name table and a randomly generated suffix.
We generate two types of name traces, simulating average
lookup workload and heavy lookup workload, respectively.
Each name trace contains 200M names.

The average workload trace is generated by randomly
choosing names from the name table, while the heavy
work load trace is generated by randomly choosing from
the top 10% longest names in the name table. Intuitively,
the longer the input names are, the more state transition
operations the GPU will perform for their lookups, mean-
ing heavier workload.

5.2. Experimental results

For the GPU-based name lookup engine, we measure
the performance of the TCT as the base reference, and com-
pare this performance with that of the NCE proposed in
Section 3. In TCT, the transitions of each node are sorted
by the values of the characters to support binary search.

In Section 5.2.1 and Section 5.2.2, we evaluate the look-
up throughput, lookup latency and memory requirement



Fig. 9. Throughput and latency on 10M name table (average workload,
a = 0.5).

Fig. 10. Throughput and latency on 10M name table (heavy workload,
a = 0.5).

3174 Y. Wang et al. / Computer Networks 57 (2013) 3165–3177
of the TCT and NCE methods for comparison. The scalabil-
ity of our lookup engine design is evaluated in Section 5.2.3.
Finally, in Section 5.2.4, we evaluate the performance of
NCE on handling name prefix updates.

5.2.1. Throughput and latency
Firstly, we measure the throughput and latency of the

TCT and NCE approaches on the 3M and 10M name tables.
For each method, the experiments are conducted under
different parameters: doubling block number of a grid
from 8 to 4096, doubling thread number of a block from
32 to 1024, doubling stream number from 1 to 4096. The
experimental results are shown in Fig. 7–10. For brevity,
we only show the statistics with latency less than 1000 ls.

From Fig. 7 and Fig. 8, we can derive that with a latency of
100 ls, by NCE, the lookup performance under average
workload and heavy workload of the 3M name table can
achieve 51.78 MSPS and 47.82 MSPS, respectively, while
TCT cannot even satisfy the requirement of 100 ls latency.
With a latency of 200 ls, TCT can arrive at lookup through-
put of 12.16 MSPS and 11.98 MSPS, under average and hea-
vy workload, respectively; while NCE can achieve 59.33
MSPS and 53.79 MSPS, under average and heavy workload,
respectively. The above results demonstrate that, NCE has a
five times speedup over TCT, as well as better latency
performance.

For the larger 10M name table, we obtain similar lookup
and latency performance. Assuming that the average packet
length is 250 bytes, with the latency required to be 100 ls,
NCE achieves 103.56 Gbps and 95.64 Gbps throughput
under average and heavy workload, respectively.
Fig. 7. Throughput and latency on 3M name table (average workload,
a = 0.5).

Fig. 8. Throughput and latency on 3M name table (heavy workload,
a = 0.5).
5.2.2. Memory space
We also measure the memory cost of these methods for

comparison, based on the 3M and 10M name tables.
Table 2 shows the memory consumption of TCT and

NCE. For the 3M name table, the CHT and ETA of NCE re-
quire 60.14 MBytes and 60.72 MBytes respectively, and
the total memory consumption is 120.86 MBytes. Com-
pared with the memory consumption (370.87 MBytes) of
TCT, NCE reduces memory cost by 67.41%. For the 10M
name table, the CHT and ETA require 186.16 MBytes and
343.47 MBytes, 529.63 MBytes in total, while TCT con-
sumes 1310.02 MBytes. 59.57% memory reduction is
achieved by NCE. Therefore, our proposed methods reduce
storage space effectively over TCT.

5.2.3. Scalability
While our GPU-based name lookup engine demon-

strates good performance on the 3M and 10M name tables,
we are also interested in foreseeing its performance trend
as the name table size grows. For that, we partition each
name table into ten equal-sized subsets, and progressively
generate ten name tables for each of them; the kth gener-
ated name table consists of the first k equal-sized subsets.
Experiments are then conducted on these 20 generated
name tables derived from the 3M name table and 10M
name table. Experimental results on lookup throughput,
memory requirement and lookup latency are presented
in Figs. 11 and 12, respectively.

As the name table size grows, lookup throughput and
lookup latency tend to stabilize around 50 MSPS and



Table 2
Comparison of NCT and NCE’s processing performance.

Name
table

Average name
length (Byte)

TCT size
(MByte)

Component
number

Distinct component
number

NCE (MByte) Compression ratio (TCT
vs. NCE)

CHT size
(a = 0.5)

ETA
size

Total
size

3M 21.27 370.87 6,223,396 2,505,706 60.14 60.72 120.86 67.41%
10M 24.48 1310.02 12,637,894 7,756,762 186.16 343.47 529.63 59.57%

Fig. 11. Growth trend of lookup speed (a = 0.5).

Fig. 12. Growth trend of lookup latency (a = 0.5).

Fig. 13. Growth trend of memory size (a = 0.5).

Fig. 14. The lookup throughput with different update rates.

Y. Wang et al. / Computer Networks 57 (2013) 3165–3177 3175
100 ls, respectively. Fig. 13 further depicts the memory
consumption under different name table scales. Regarding
the name table scales, the slope of NCE is smaller than that
of the TCT, which makes NCE more scalable to large-scale
name tables.

5.2.4. Name table update
Finally, we measure the performance of NCE on han-

dling name prefix updates, both insertions and deletions.
In general, our design performs well on handling name ta-
ble updates. On both name tables, we can consistently han-
dle more than 900K insertions per second. As we have
described in Section 3, deletions are much easier to imple-
ment than insertions; we can steadily handle around 1.2M
deletions per second.

Fig. 14 further demonstrates the name lookup speed
with different update rates (50% insertions and 50% dele-
tions). As the update rate grows, lookup throughput tends
to decrease slowly and stabilize around 48 MSPS on the
10M name table under average workload. In our system,
the updates are handled in the host memory (NCE Builder)
firstly; and then the modified parts of a FIB are loaded into
the device memory to update the name lookup engine.
Only the memory copy operation of update process com-
petes with the name lookup process for the copy engine;
therefore, the name lookup speed is only slightly affected
by the update operations.
6. Related work

Many recent research efforts [1,5,13–16] have figured
out that we should move the Internet away from its cur-
rent reliance on purely point-to-point primitives. There-
fore, they have proposed pioneering detailed designs that
make the Internet more data-oriented or content-centric.
Meanwhile, routing and forwarding based on hierarchical
names have been studied in recent research [17–20],
revealing the feasibility of using name instead of IP address
from the viewpoint of working principle under small name
table sizes. However, longest prefix match for hierarchical
names can potentially slow down the lookup process. Thus,
many software-based or hardware-based solutions are
proposed to improve name lookup performance.



3176 Y. Wang et al. / Computer Networks 57 (2013) 3165–3177
Software-based solutions: Hash-based methods have
been intensively studied in order to quickly find the
matched prefix by leveraging the exact match ability of hash
tables. Z. Genova et al. [21] hash URLs to fixed-length signa-
tures, and look up the signature in the hash table. This meth-
od regards the URL as a whole entity and cannot support
longest prefix match. B. Michel et al. designed an incremen-
tal hash function called Hash Chain [22] to aggregate URLs
sharing common prefixes. The logical data structure of Hash
Chain is similar to our name component trie, which effec-
tively reduces the memory consumption. Further, Zhou
et al. [23] use a CRC-32 hash function to compress URL com-
ponents, and utilize a multi-string matching algorithm for
URL lookup. However, these hash-based algorithms all have
a drawback – false positives due to hash collisions. Without
additional remedies, any possibility of false positive will
undermine the integrity of the fundamental function of
packet forwarding in NDN routers. In Connectivity Server
[24], all the URLs are sorted lexicographically and stored
as a delta-encoded text file. Each entry only stores the differ-
ent parts (delta) between the current URL and previous one.
This scheme especially reduces the storage requirement
significantly when the adjacent URLs share the same com-
mon prefix as long as possible. However, this scheme cannot
support fast incremental update and thus fails to handle the
frequent updates in NDN.

Hardware-based solutions: TCAM is well-known for its
fast speed. A TCAM-based name lookup mechanism in
NDN proposal [5] is presented. Unfortunately, from the
cost point of view, it can hardly be a practical option, given
its low memory density, high price and excessive power
consumption.

Recently, GPU as a powerful and programmable parallel
processing platform has attracted intensive interests in high
speed packet processing: IP lookup [25,26], packet classifi-
cation [27,28] and pattern matching [29–31]. Name lookup
is more complex than IP lookup or packet classification.
Essentially, name lookup is a pattern matching problem, in
which throughput, not latency, is a key criterion. Therefore,
previous research on GPU-based packet processing schemes
do not provide a complete solution for reference.

We first proposed the component encoding mechanism
in our previous work [7], in which the lookup speed can
only reach 1.5 MSPS because it is limited by its imperfect
component encoding algorithm and CPU-based implemen-
tation. In this work, we propose a Local-code allocation
mechanism to reduce the memory space and boost the
lookup speed. Meanwhile, we leverage the GPU to acceler-
ate NDN name lookup by addressing all these performance
issues, which include high-speed lookup and memory effi-
ciency, as well as small latency and fast incremental up-
date simultaneously.
7. Conclusions

NDN/CCN as an emerging technology is currently
receiving a lot of attention; a broad range of technical top-
ics are open for innovative research, and have yet to be
standardized. Among them, NDN name lookup is one of
the fundamental functions that promote the actual
deployment of NDN. However, the questions of wire speed
name lookup, memory cost, update support with off-
the-shelf technologies under extremely large name tables
remain to be solved. In this paper, we propose a Name
Component Encoding solution that implements a GPU-
accelerated name lookup engine with a number of innova-
tive techniques. In NCE, each component is assigned a code
to improve the name lookup performance, as well as re-
duce the memory consumption required by the NDN name
table. Extensive experiments on real name tables collected
from the Internet, using one chip of GTX590, demonstrate
that NCE can achieve up to 51.78 MSPS on a name table
containing 10 millions of name prefixes while keeping
the latency less than 100 ls and supporting almost 1M up-
dates per second.
Acknowledgments

We thank Harry Rudin (the Editor in Chief), the anony-
mous reviewers and the guest editors of this special issue
on ICN computer networks — Yanghee Choi, Andrea Detti,
Mario Gerla, Diego Perino — for their help and invaluable
comments.
References

[1] V. Jacobson, D.K. Smetters, J.D. Thornton, M. Plass, N. Briggs, R.
Braynard, Networking named content, in: Proc. of ACM CoNEXT,
2009.

[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I.
Stoica, M. Walfish, A layered naming architecture for the internet, in:
Proc. of ACM SIGCOMM, 2004.

[3] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, The design
and implementation of an intentional naming system, in: Proc. of
ACM SOSP’99, 1999.

[4] M. Gritter, D.R. Cheriton, An architecture for content routing support
in the internet, in: Proc. of USENIX USITS’01, 2001.

[5] L. Zhang, D. Estrin, V. Jacobson, B. Zhang, Named Data Networking
(NDN) Project, in: Technical Report, NDN-0001, 2010.

[6] http://news.netcraft.com/archives/category/web-server-survey/.
[7] W. Yi, H. Keqiang, D. Huichen, M. Wei, J. Junchen, L. Bin, C. Yan,

Scalable name lookup in ndn using effective name component
encoding, in: Proc. of IEEE ICDCS’12, 2012.

[8] K. Fatahalian, M. Houston, A closer look at gpus, Communications of
the ACM 51 (2008) 50–57.

[9] K.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. KrÂijger, A.E.
Lefohn, T.J. Purcell, A survey of general-purpose computation on
graphics hardware, Computer Graphics Forum 26 (2007) 80–113.

[10] V. Jacobson, D.K. Smetters, N.H. Briggs, M.F. Plass, P. Stewart, J.D.
Thornton, R.L. Braynard, Voccn: voice-over content-centric
networks, in: Proceedings of the 2009 Workshop on Re-
architecting the Internet, ReArch ’09, ACM, New York, NY, USA,
2009, pp. 1–6.

[11] D.E. Knuth, Art of Computer Programming, volume 1/Fundamental
Algorithms; volume 3/Sorting and Searching, Addison-Wesley, 1973.

[12] http://www.partow.net/programming/hashfunctions/
#BKDRHashFunction.

[13] D. Cheriton, M. Gritter, Triad: a new next-generation internet
architecture, 2000, <http://www-dsg.stanford.edu/triad>.

[14] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S.
Shenker, I. Stoica, A data-oriented (and beyond) network
architecture, in: Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’07, ACM, New York, NY,
USA, 2007, pp. 181–192.

[15] L.M. Correia, H. Abramowicz, M. Johnsson, K. Wnstel, Architecture
and Design for the Future Internet: 4WARD Project, 1st ed., Springer
Publishing Company, 2011. Incorporated.

[16] N. Fotiou, P. Nikander, D. Trossen, G.C. Polyzos, Developing
Information Networking Further: From Psirp to Pursuit, vol. 66,
Springer, Berlin Heidelberg, 2012. pp. 1–13.

http://refhub.elsevier.com/S1389-1286(13)00222-3/h0005
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0005
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0010
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0010
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0010
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0015
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0015
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0015
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0015
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0015
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0015
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0020
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0020
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0020
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0025
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0025
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0025
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0025
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0025
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0025
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0025
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0030
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0030
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0030
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0030
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0035
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0035
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0035
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0035


Y. Wang et al. / Computer Networks 57 (2013) 3165–3177 3177
[17] L. Popa, A. Ghodsi, I. Stoica, Http as the narrow waist of the future
internet, in: Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, ACM, New York, NY, USA, 2010, pp. 1–6.

[18] C.A. Shue, M. Gupta, Packet forwarding:name-based vs. prex-based,
in: Proc. of IEEE INFOCOM’07, 2007.

[19] H. Hwang, S. Ata, M. Murata, A feasibility evaluation on name-based
routing, in: Proc. of IPOM2009, 2009.

[20] Y. Wang, H. Dai, J. Jiang, K. He, W. Meng, B. Liu, Parallel name lookup
for named data networking, in: IEEE Global Telecommunications
Conference (GLOBECOM), 2011, pp. 1–5.

[21] Z.G. Prodanoff, K.J. Christensen, Managing routing tables for url
routers in content distribution networks, International Journal of
Network Management 14 (2004) 177–192.

[22] B.S. Michel, K. Nikoloudakis, P. Reiher, L. Zhang, Url forwarding and
compression in adaptive web caching, in: Proc. of IEEE INFOCOM’00,
2000.

[23] Z. Zhou, T. Song, Y. Jia, A high-performance url lookup engine for url
fitering systems, in: Proc. of IEEE ICC’10, 2010.

[24] K. Bharat, A. Broder, M. Henzinger, P. Kumar, S.
Venkatasubramanian, The connectivity server: fast access to
linkage information on the Web, in: Proc. of the Seventh
International World Wide Web Conference, 1998.

[25] S. Han, K. Jang, K. Park, S. Moon, Packetshader: a gpu-accelerated
software router, in: Proc. of ACM SIGCOMM’10, 2010.

[26] J. Zhao, X. Zhang, X.Wang, Y.Deng, X. Fu, Exploiting graphics
processors for high-performance ip lookup in software routers, in:
Proc. of IEEE INFOCOM’11, Mini-Conference, 2011.

[27] K. Kang, Y. Deng, Scalable packet classification via gpu
metaprogramming, in: Design, Automation Test in Europe
Conference Exhibition (DATE) 2011, 2011, pp. 1–4.

[28] A. Nottingham, B. Irwin, Parallel packet classification using gpu co-
processors, in: Proceedings of the 2010 Annual Research Conference
of the South African Institute of Computer Scientists and
Information Technologists (SAICSIT ’10), 2010, pp. 231–241.

[29] C.-H. Lin, S.-Y. Tsai, C.-H. Liu, S.-C. Chang, J.-M. Shyu, Accelerating
string matching using multi-threaded algorithm on gpu, in: 2010
IEEE Global Telecommunications Conference (GLOBECOM 2010),
2010, pp. 1–5.

[30] N. Cascarano, P. Rolando, F. Risso, R. Sisto, infant: Nfa pattern
matching on gpgpu devices, SIGCOMM Comput. Commun. Rev. 40
(5) (2010) 20–26.

[31] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, Q. Dong, Gpu-based
nfa implementation for high speed memory efficient regular
expression matching, in: ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2012.

Yi Wang is a postdoctoral research fellow in
the Department of Computer Science and
Technology, Tsinghua University. He received
the PhD degree in Computer Science and
Technology from Tsinghua University in July,
2013. E-mail: wy@ieee.org. His research
interests include router architecture design
and implementation, greening the Internet,
fast packet forwarding and information-cen-
tric networking.
Huichen Dai is a PhD candidate in the
Department of Computer Science and Tech-
nology, Tsinghua University. He got his B.S.
degree from Xidian University, Xi’an, China, in
2010. His research interests mainly lie in:
router architecture, network processor archi-
tecture, Named Data Networking (NDN).
Ting Zhang is a PhD candidate in the
Department of Computer Science and Tech-
nology, Tsinghua University. His recent work
focuses on routing lookup, packet classifica-
tion. His research interests encompass net-
work security and VXworks OS.
Wei Meng received his B.S. degree in Com-
puter Science and Technology, Tsinghua Uni-
versity in 2012. He is now a PhD student in
School of Computer Science, Georgia Institute
of Technology. His research interests include
computer networks and security.
Jindou Fan is now a PhD student at the
Department of Computer Science and Tech-
nology, Tsinghua University. His research
interests include router/switch design, traffic
management, greening the Internet and
future Internet architecture.
Bin Liu was born in 1964. He is now a full
Professor in the Department of Computer
Science and Technology, Tsinghua University.
His current research areas include high per-
formance switches/routers, network proces-
sors, high speed network security and
greening the Internet. He has received
numerous awards from China and abroad
including the Distinguished Young Scholar of
China in 2006 and the inaugural Applied
Network Research Prize sponsored by ISOC
and IRTF in 2011.

http://refhub.elsevier.com/S1389-1286(13)00222-3/h0040
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0040
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0040
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0040
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0085
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0085
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0085
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0090
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0090
http://refhub.elsevier.com/S1389-1286(13)00222-3/h0090

	GPU-accelerated name lookup with component encoding
	1 Introduction
	2 NDN name lookup: background and challenges
	2.1 Packet forwarding process
	2.2 Name lookup challenges

	3 Name component encoding: algorithm and data structure
	3.1 Name Component Trie (NCT)
	3.2 Basic name component encoding
	3.3 Transition array for ENCT
	3.4 Code allocation algorithm
	3.4.1 Global-code allocation mechanism
	3.4.2 Local-code allocation mechanism
	3.4.3 False positive

	3.5 Component hash table
	3.6 Update
	3.6.1 Delete
	3.6.2 Insert


	4 Implementation
	4.1 Platform, environment and tools
	4.2 Overall structure
	4.3 Workflow
	4.3.1 Pre-processing
	4.3.2 Search-processing
	4.3.3 Post-processing

	4.4 Streaming
	4.4.1 CUDA stream
	4.4.2 Stream scheduling algorithm


	5 Evaluation
	5.1 Experiments setup
	5.1.1 Name tables
	5.1.2 Name traces

	5.2 Experimental results
	5.2.1 Throughput and latency
	5.2.2 Memory space
	5.2.3 Scalability
	5.2.4 Name table update


	6 Related work
	7 Conclusions
	Acknowledgments
	References


