
POSTER: Finding JavaScript Name Conflicts on the Web
Mingxue Zhang

Chinese University of Hong Kong
mxzhang@cse.cuhk.edu.hk

Wei Meng
Chinese University of Hong Kong

wei@cse.cuhk.edu.hk

Yi Wang
Southern University of Science and

Technology
wy@ieee.org

ABSTRACT
Including JavaScript code from many different hosts is a popular
practice in developing web applications. For example, to include a
social plugin like the Facebook Like button, a web developer needs
to only include a script from facebook.net in her/his web page.
However, in a web browser, all the identifiers (i.e., variable names
and function names) in scripts loaded in the same frame share
a single global namespace. Therefore, a script can overwrite any
of the global variables and/or global functions defined in another
script, causing unexpected behavior.

In this work, we develop a browser-based dynamic analysis
framework, that monitors and records any writes to JavaScript
global variables and global functions. Our tool is able to cover
all the code executed in the run time. We detected 778 conflicts
across the Alexa top 1K websites. Our results show that global name
conflicts can indeed expose web applications to security risks.

CCS CONCEPTS
• Security and privacy→ Browser security;Web application
security.

KEYWORDS
JavaScript; Name conflicts; Web applications
ACM Reference Format:
Mingxue Zhang, Wei Meng, and Yi Wang. 2019. POSTER: Finding JavaScript
Name Conflicts on the Web. In 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19), November 11–15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3319535.3363268

1 INTRODUCTION
It is very common to separate code of different functionalities into
multiple JavaScript files in today’s web applications. Including
JavaScript code from other hosts is also a very popular practice in
developing web applications, because a developer can reuse the
code in other third-party programming libraries and easily build
an application rich of functions.

While enhancing the functionality of a web application, the in-
cluded third-party scripts may cause unexpected behavior to the
developer’s own code. In the client-side JavaScript runtime environ-
ment, i.e., the web browser, there exists a single global namespace

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6747-9/19/11.
https://doi.org/10.1145/3319535.3363268

for all identifiers (i.e., variable names and function names) in scripts
loaded in the same frame. Any variable or function defined in a
script’s own main scope is available to any other script running
in the same frame. This means that a script can not only directly
call global functions and read the values of global variables in an-
other script, but also overwrite any of the global variables and/or
global functions. Since JavaScript is a weakly typed programming
language, a script can even change the type of any global variable
without causing any exceptions or errors. Such kind of global name
conflicts can compromise the integrity of the developer’s own code
and the third-party library code. As a result, a script may take a
different branch, return an incorrect value, or simply crash, etc.

Even if a developer carefully examines the source code before
she/he includes a third-party script, which could be very difficult
because of code minimization or obfuscation, global name conflicts
cannot be avoided. The third-party code is hosted on a remote
server and can be modified by the script provider at any time with-
out notifications. Further, a script can dynamically include any
other scripts, which may also contain global names that conflict
with the existing ones. They might be prohibited by the Content-
Security Policy (CSP) [9]. However, it had been shown that CSP
had a very low adoption rate [10] because many websites need to
load additional scripts from almost any sources.

Prior research have studied potential global name conflicts be-
tween two JavaScript libraries. In [5], the authors tested if two
libraries would cause different behaviors when they were loaded
in different settings. They created a synthetic client for each of the
settings. Such clients can test the simple operations of the libraries.
They may not well represent the code in real applications that could
be much more complex. Further, only a limited number of libraries
were studied in a synthetic environment. The result cannot reflect
the conflicts in real applications, which may include more than
two libraries. Finally, the analysis was based on a selective record-
replay dynamic analysis framework [8] that instruments specified
source code. Thus, the tool does not cover any code that is loaded
dynamically.

In this work, we develop a browser-based dynamic analysis
framework that can monitor and log writes to JavaScript global
memory locations (i.e., variables and functions). In particular, we in-
strument JavaScript code dynamically bymodifying the V8 JavaScript
engine of the Chromium browser. We insert our monitoring code
to log any operations that are related to memory write in a script.
This allows us to cover all code executed at the run time. With the
logs, we are able to detect three kinds of global name conflicts – 1)
variable value conflict, where two or more scripts write different
values of the same type to the same global variable; 2) function
definition conflict, where multiple scripts define a global function
with the same name; and 3) variable type conflict, where multiple
scripts assign values of different types to the same global variable.

facebook.net
https://doi.org/10.1145/3319535.3363268
https://doi.org/10.1145/3319535.3363268
https://doi.org/10.1145/3319535.3363268

We implemented a prototype of our framework based on the
version 71 of Chromium. We conducted a measurement study by
using the prototype to collect logs from the main pages of the Alexa
top 1,000 websites. In total, we detected 47 variable value conflicts
on 25 websites, 728 function definition conflicts on 85 websites, and
3 variable type conflicts on 2 websites.

2 DESIGN AND METHODOLOGY
We illustrate how our analysis framework works in this section.
We record each function definition in the V8 parser to detect func-
tion definition conflicts (§2.1). We dynamically instrument any
JavaScript code that is executed to log writes to a global variable
(§2.2). Our instrumentation dynamically infers the type of the write
target for each write operation. The logs allow us to detect conflict-
ing writes by different scripts to the same global functions or the
same global variables (§2.3).

2.1 Recording Global Function Definitions
The root cause of function definition conflicts is two or more scripts
define their functions using the same global function name. There-
fore, we need to find all functions that are explicitly defined in each
script. Whenever a global function is parsed by the V8 parser, we
log its name and the URL of its script. Especially, we log only the
ones with a non-empty function name. This allows us to detect
multiple explicit definitions of the same global function.

2.2 Recording Writes to Global Variables
We focus on four types of operations that JavaScript may perform
to write to a variable: 1) assignment statements; 2) object literal
expressions; 3) call expressions; and 4) return statements. When
any of such operations is executed, our framework uses the typeof
operator in JavaScript to infer the type of the write target. It also
records the value of the target if it is a primitive type variable, a
unique ID for each operation e.g., the ID of the script, and the ID of
the execution context (frame). Except for the above data, we collect
additional information for each kind of operations as we describe
next.
Assignment Statements. For each write target v in an assign-
ment statement, in order to tell if v is a global variable, our tool
checks all the declared variable names (including parameters, if the
current scope is a function scope) within the scope of the current
assignment statement. It continues searching in the outer scopes
until a match is found or it reaches the global scope. If no match is
found for a variable v or it is found only in the global scope, it is
considered as a global variable.
Object Literal Expressions. A script may change a property of a
global object instead of overwriting the entire variable. Therefore,
our tool needs to record writes to object properties. First, it logs
direct assignments to object properties such as o.p = 1. It also
records a special kind of writes to object properties – object literal
expressions. Specifically, for each object literal expression, e.g., {p1 :
e1, ...}, it logs a write to o.p1 where o is the temporary variable
representing the object literal. We do realize that our approach is
not comprehensive, which we will discuss in §4.

Call Expressions. An object can be passed by reference as an
argument to a parameter of a function and then be modified within
the function through the parameter variable. Therefore, we need to
keep track of the pass of objects in function calls. Specifically, for
each function call, our tool logs the function name and a list of argu-
ments that are passed into this function. When the program enters
into the function body (i.e., the callee), it records each parameter.

In this way, we can find a corresponding parameter record logged
in the callee for each of the argument record logged in the caller. If a
write to the local parameter variable is recorded, we can then trace
back to the caller logs to determine if this would cause a global
name conflict.
Return Statements. A local object u may be initialized within
a function and then returned and assigned to another variable v .
This variable may be modified later by the caller function or by any
other functions if it is a global variable. To detect potential conflicts,
we also record which local variable is being returned in a return
statement. This allows us to link the writes to u with the writes to
v and to detect conflicting writes to the same (global) object.

2.3 Detecting Conflicts
In this section, we explain how we detect conflicts using the logs
described in §2.1 and §2.2.
Alias Analysis. For each write to a variable, we will maintain
an alias if the write is a copy-by-reference or a pass-by-reference
operation. An alias is removed when one of the variables is assigned
with another object. Then, we will find the write records of the
current variable as well as the records of its aliases to determine if
there exists a conflict.
Function Definition Conflicts. To find function definition con-
flicts, we check the function definition logs in each frame to find if
the same global function had been defined for more than once by
different scripts.
Value Conflicts and Type Conflicts. If a global variable is of a
primitive type, it does not have an alias. We will search any other
write records to the same global variable. If the logged values in two
records are different and the writes are performed by two different
scripts, we report it as a variable value conflict. However, if the
types of the global variable are different, we report it as a variable
type conflict.

If a global variable is an object, a value conflict may happen when
the variable itself is overwritten with another variable, or a property
of the object is written. Therefore, except for the assignment records
to the same variable, we also search the write records of all the
object’s valid aliases with regards to the current assignment. For
writes to the object variable itself, a value conflict is reported if it
is assigned with another object, and a type conflict is reported if it
is assigned with a primitive-type value. For writes to the property
of the object, we apply the above rules depending on its type.

3 EVALUATION
We crawled data from the main pages of the Alexa top 1K websites
in August, 2019. We gathered 957 function definition log files and
variable write log files from 957 frames loaded on 893 websites.
We were not able to collect data using our current implementation

1 function createCookie(a, e, b) {
2 if (b) { var d = new Date; } else b = "";
3 document.cookie = a + "\x3d" + e + b + "; path\x3d/"
4 }

1 function createCookie(b, c, a) {
2 if (a) { var d = new Date; } else a = "";
3 - 1 < google_tag_manager["GTM-KBNVHH"].macro(134).indexOf("

zoho.eu") ?
4 document.cookie = b + "\x3d" + c + a + "; domain\x3d.zoho.eu;

path\x3d/" : ;
5 }

Listing 1: Conflicting definitions of createCookie() in different scripts
on https://www.zoho.com.

from the rest websites. We leave it as a future work to improve
our implementation. Except for those that were extremely large
(with over 1 million records), we were able to analyze 947 (98.96%)
assignment log files and 957 (100.00%) function definition files.

In summary, we found 47 variable value conflicts on 25 websites,
728 function definition conflicts on 85 websites, and 3 variable type
conflicts on 2 websites. Note that if a conflict was caused by the
same script, we do not report here.

Interestingly, we found 46 cookie-related functions were over-
written by at least one script. One example was detected on website
https://www.zoho.com, where 5 inline scripts all defined a global
function createCookie(). The definitions from different scripts are
slightly different, as shown in Listing 1.

Similarly, we discoveredmultiple definitions of function getCookie
() on https://zoom.us/. This shows that a JavaScript global name
conflict could expose a victim user to security risks. For example, a
malicious third-party can manipulate getCookie() to force a user
to use the attacker’s session in the client-side code and trick the
application code into processing the attacker’s Cookie.

4 DISCUSSION AND FUTUREWORK
We now discuss the limitations of our current work and our future
work.
Incomplete Support of Objects. An alternative way to define
an object property is to initialize it through the identifier this
within the constructor or a method of an object. For example,
t = new Obj(...) {this .p = e; }. In order to determine the object
that this refers to, we need to know the receiver object of the
methods. We plan to support it in our future work.
Function Definition Conflicts. Except for directly declaring a
global function, a script can also assign a function literal to a global
identifier, e.g., f = f unction(){...}. This could result in a function
definition conflict or a type conflict. To detect this kind of conflicts,
we need to also cross check the function definition logs and variable
write logs. We will include this analysis in our future work.
Characterization of Conflicts. Our categorization of the de-
tected conflicts is not sufficient for comprehensively investigating
the problem of JavaScript global name conflicts. For example, it
would be interesting to analyze the conflicts of third-party scripts
overwriting first-party defined names. We aim to perform a com-
prehensive analysis of the conflicts in the future.

5 RELATEDWORK
JavaScript Conflict Analysis. Patra et al. proposed ConflictJS, an
automated approach to analyzing the conflicts between JavaScript

libraries using synthetic clients [5]. They considered simple oper-
ations like direct variable write and property write, and studied
limited number of JavaScript libraries. In [8], the authors proposed
a dynamic JavaScript analysis framework that is based on selective
record-replay technique. Therefore, the tool is not able to cover
dynamically loaded code. In contrast, our dynamic analysis frame-
work is able to detect the conflicts between scripts that are even
dynamically loaded.
JavaScript Type Inference. Pradel et al. proposed TypeDevil
to detect type inconsistency in JavaScript [6]. Jensen et al. de-
fined a type analysis for JavaScript based on abstract interpreta-
tion [3]. Hackett et al. presented a hybrid type inference approach
for JavaScript based on points-to analysis in [1]. These works fo-
cus on inferring JavaScript type information within a single script.
Meanwhile, there have been several learning-based approaches to
predicting the type for JavaScript code [2, 4, 7]. They aimed to stati-
cally infer about a variable type and therefore enable the generation
of much faster code, which is orthogonal to our work. In our work,
we leverage the JavaScript built-in type checker to infer the type of
a variable at run time.

6 CONCLUSION
We developed a browser-based dynamic analysis framework to
study JavaScript global name conflict problem on the Web. We
collected data from the Alexa top 1K websites. In total, we detected
47 variable value conflicts on 25 websites, 728 function definition
conflicts on 85 websites, and 3 variable type conflicts on 2 websites.
We further investigated the detected conflicts and demonstrated
that the global identifier conflicts may lead to security issues.

ACKNOWLEDGMENT
The work described in this paper was partly supported by a grant
from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (CUHK 24209418).

REFERENCES
[1] Brian Hackett and Shu-yu Guo. 2012. Fast and precise hybrid type inference for

JavaScript. ACM SIGPLAN Notices 47, 6 (2012), 239–250.
[2] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018.

Deep learning type inference. In Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). Lake Buena Vista, FL.

[3] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In International Static Analysis Symposium. Springer, 238–255.

[4] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring
JavaScript function types from natural language information. In Proceedings of the
41st International Conference on Software Engineering (ICSE). Montréal, Canada.

[5] Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: finding and
understanding conflicts between javascript libraries. In Proceedings of the 40th
International Conference on Software Engineering (ICSE). Gothenburg, Sweden.

[6] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic type
inconsistency analysis for JavaScript. In Proceedings of the 37th International
Conference on Software Engineering (ICSE). Florence, Italy.

[7] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from big code. In ACM SIGPLAN Notices, Vol. 50. ACM, 111–124.

[8] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.
In Proceedings of the 18th European Software Engineering Conference (ESEC) / 21st
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE). Saint
Petersburg, Russia.

[9] W3C. [n.d.]. Content Security Policy Level 3. https://www.w3.org/TR/CSP3/.
[10] Ming Ying and ShuQin Li. 2016. CSP adoption: current status and future prospects.

Security and Communication Networks 9, 17 (2016), 4557–4573.

https://www.zoho.com
https://www.zoho.com
https://zoom.us/
https://www.w3.org/TR/CSP3/

	Abstract
	1 Introduction
	2 Design and Methodology
	2.1 Recording Global Function Definitions
	2.2 Recording Writes to Global Variables
	2.3 Detecting Conflicts

	3 Evaluation
	4 Discussion and Future Work
	5 Related Work
	6 Conclusion
	References

