
Acquirer: A Hybrid Approach to Detecting Algorithmic
Complexity Vulnerabilities

Yinxi Liu
The Chinese University of Hong Kong

Hong Kong SAR, China
yxliu@cse.cuhk.edu.hk

Wei Meng
The Chinese University of Hong Kong

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

ABSTRACT

Algorithmic Complexity (AC) Denial-of-Service attacks have been
a threat for over twenty years. Attackers craft particular input vec-
tors to trigger the worst-case logic of some code running on the
server side, which leads to high resource consumption and per-
formance degradation. In response, several vulnerability detection
tools have been developed to help developers prevent such attacks.
Nevertheless, these state-of-the-art tools either focus on a specific
type of vulnerability or suffer from state explosion. They are either
limited to a small detection scope or unable to run efficiently.

This paper aims to develop a fully automated approach to ef-
fectively and efficiently detecting AC vulnerabilities. We present
the design and implementation of Acqirer, which detects AC
vulnerabilities in Java programs. Acqirer first statically locates
potentially vulnerable structures in the target program, then per-
forms efficient selective path exploration to dynamically verify the
existence of two different execution paths with a significant com-
putation cost difference. The vulnerable structures it detects can
also help the developers fix the corresponding vulnerabilities.

We evaluatedAcqirerwith twowidely used benchmark datasets
and compared it with four state-of-the-art tools. In the evaluation,
it detected 22 known AC vulnerabilities, which substantially out-
performed all the existing tools together. Besides, it discovered 11
previously unknown AC vulnerabilities in popular real-world ap-
plications. Our evaluation demonstrates that Acqirer is highly
effective and efficient in automatically detecting AC vulnerabilities.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Denial-of-Service Attacks; Vulnerability Detection

ACM Reference Format:

Yinxi Liu and Wei Meng. 2022. Acqirer: A Hybrid Approach to Detecting
Algorithmic Complexity Vulnerabilities. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’22),
November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3548606.3559337

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3559337

1 INTRODUCTION

Denial-of-Service (DoS) attack has been a major threat to the avail-
ability of the vast number of applications running on the Internet.
Attackers can craft attack requests to consume the computation
resources of the server hosting a victim application. In general, the
effect of a DoS attack is restricted by the volume of attack traffic an
attacker can initiate, but some exploits can significantly increase
the severity of such attacks.

Algorithmic Complexity (AC) vulnerabilities, for example, en-
able asymmetric DoS attacks. They can cause polynomial or even
exponential resource consumption concerning the inputs. Such
vulnerabilities amplify the attacks’ impact and require much more
defense effort. They can typically be launched by a single user, with
a relatively small payload, to cause a disproportionately powerful
effect. On this account, AC vulnerabilities have become a common
attack vector for DoS attacks, which can be exploited to further
amplify the power of the traditional distributed DoS attacks.

AC vulnerabilities arise from intended functionalities/algorithms
with high worst-case complexity. For example, the Decompression
Bombs 1 vulnerability comes from a decompression algorithm; the
Billion laughs attack 2 utilizes the worst-case performance of an
XML parser; the ReDoS 3 attacks make use of the worst-case super-
linear implementation of regex engines; and the Hash-table DoS
Attacks 4 triggers collisions in a hash table. Exploiting the intended
functionalities makes AC DoS attacks “quieter” than the traditional
DoS attacks, because widely used vulnerability indicators like run-
time exceptions, unusually high traffic, and excessive logging may
not be present. Consequently, system administrators and security
experts may fail to notice an ongoing AC DoS attack.

Even though AC DoS has been a well-known issue for years,
some high-profile applications still fall victim to it. Since the AC
vulnerabilities are not caused by implementation bugs but by algo-
rithmic logic, it is hard for developers to detect and mitigate them.
Developers need to carefully design their algorithms or implement
input sanitization and hard resource limits to prevent such attacks,
which could be a large amount of work with limited effects.

Researchers have proposed many tools for detecting AC vulnera-
bilities [6–8, 17, 27, 30, 33, 39, 40]. However, developing a completely
automated and widely applicable tool for effectively and efficiently
detecting AC vulnerabilities remains a challenge. Some works fo-
cus on a specific type of AC vulnerabilities with known sources,
e.g., regex engines [27], resource-intensive library APIs [17, 39],
which have limited application scope. Others [8, 30, 33, 40] do not

1Decompression Bombs: https://en.wikipedia.org/wiki/Zip_bomb
2Billion Laughs Attack: https://en.wikipedia.org/wiki/Billion_laughs_attack
3ReDoS: https://en.wikipedia.org/wiki/ReDoS
4https://fahrplan.events.ccc.de/congress/2011/Fahrplan/events/4680.en.html

https://doi.org/10.1145/3548606.3559337
https://doi.org/10.1145/3548606.3559337

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yinxi Liu and Wei Meng

have specialized AC vulnerability modeling and analysis. Instead,
they apply a general vulnerability detection approach, and obtain
statistics about the resulting complexity or resource consumption
of inputs at run time using either fuzzing or symbolic/concolic
execution. These tools suffer from state explosions and take a long
time to run. Some researchers [6, 7] use the knowledge of loop
analysis to build static analyzers for AC vulnerabilities. However,
to the best of our knowledge, such static analyzers have high false-
positive rates and require considerable effort from a human analyst
for vulnerability validation.

This paper aims to improve the degree of automation and effi-
ciency in detecting general AC vulnerabilities.We developAcqirer,
an automated, efficient hybrid analysis tool for detecting AC vulner-
abilities in Java programs. Acqirer incorporates a static analyzer
specialized in identifying vulnerable code patterns. To validate the
vulnerabilities, it automatically generates the test harnesses for
dynamic symbolic execution by constructing the necessary call-
ing context and instrumenting the target program. Using the in-
strumented program, it then performs selective dynamic symbolic
execution guided by branch policies learned from these patterns
to efficiently verify the existence of two paths with a significant
cost difference. Such a dynamic validator helps Acqirer exclude
false positives. Further, the path constraints it reports can help the
developers analyze and fix the vulnerabilities.

We extensively evaluatedAcqirerwith twowidely used datasets:
the Worst-case Inputs from Symbolic Execution (WISE) benchmark
[10] and the challenges in the DARPA Space and Time Analysis
for Cybersecurity (STAC) program 5. We compare Acqirer with
four state-of-the-art tools in the evaluation. Acqirer can detect
almost all vulnerabilities that can be detected by all the state-of-the-
art tools combined in a much more efficient manner. Specifically,
Acqirer does not require prior knowledge of the vulnerabilities
and human effort for generating test harnesses. This allows it to
detect 3.4 times more vulnerabilities in 76.97% less analysis time
than a state-of-the-art fuzzer. Besides, Acqirer can detect many
vulnerabilities that other tools cannot detect because of its precise
static analyzer and its efficient selective dynamic path exploration
strategy. We further conducted a large-scale analysis by apply-
ing Acqirer to 46 popular open-source Java web applications
on GitHub, and detected 11 new vulnerabilities. We disclosed all
the newly detected vulnerabilities to the relevant developers. Our
evaluation results demonstrate that Acqirer can both effectively
and efficiently detect AC vulnerabilities.

In summary, this paper makes the following contributions:
• We propose a widely applicable code pattern for identifying
code blocks potentially vulnerable to AC DoS attacks.

• We develop a hybrid analysis incorporating a static path
selection algorithm and a selective symbolic execution to
detect AC vulnerabilities.

• We integrate the above analyses with an automated test
harness generator into Acqirer, an effective and efficient
hybrid analysis tool for automatically detecting AC vulnera-
bilities in Java programs.

• We demonstrate the capabilities of Acqirer by detecting
11 previously unknown AC vulnerabilities in a benchmark

5STAC Dataset: https://github.com/Apogee-Research/STAC

dataset, and 11 AC new vulnerabilities in popular open-
source applications.

2 BACKGROUND

In this section, we first introduce the necessary background related
to Algorithmic Complexity (AC) vulnerabilities in §2.1. Then we
present existing detection approaches and their limitations in §2.2.

2.1 AC Vulnerabilities

ACDoS attack was first introduced as a new class of low-bandwidth
DoS attacks by Crosby and Wallach in 2003 [14]. These attacks
exploit the algorithmic deficiencies in programs. More specifically,
for a function in the target program that accepts user input, there
exist two inputs of similar sizes that may give rise to very different
running time. Many commonly-used textbook algorithms have a
worst-case complexity higher than the average-case complexity,
like sorting, tree traversal, etc. One example shown in Listing 1
implements the insertion sort algorithm to sort a user-provided
integer array a of 𝑁 elements. The average-case complexity of the
algorithm is𝑂 (𝑛 log𝑛), whereas its worst-case complexity is𝑂 (𝑛2).
The worst-case execution of such algorithms can be exploited to
launch a DoS attack. For instance, some sorting code can take more
than 500 seconds under the input limit of 25K bytes as shown in
Table 5, because the comparison time between two sorted objects
may be long, or some projects have sub-optimal implementations
which perform worse than 𝑂 (𝑛2) under some conditions.

1 public static void sort(int[] a) {
2 final int N = a.length;
3 for (int i = 1; i < N; i++) {
4 int j = i - 1;
5 int x = a[i];
6 while ((j >= 0) && (a[j] > x)) {
7 a[j + 1] = a[j];
8 j--;
9 }
10 a[j + 1] = x;
11 }
12 }

Listing 1: An implementation of the insertion sort algorithm.

Such algorithmic deficiencies widely exist in real-world pro-
grams, as it is natural to process data differently depending on their
values, which might lead to quite different computation costs. As a
result, they have been exploited and have made a huge impact in
practice. For instance, in the zip bomb attack 6, the attacker crafted
a correctly formatted archive, which took excessive computation
resources to unpack. In particular, the data extracted from a crafted
archive whose size was only 42KB could be as large as 4.5PB.

2.2 Detection of AC Vulnerabilities

Because of the severity of AC DoS attacks, people have been trying
to detect AC vulnerabilities ahead. However, even though some
domain-specific AC vulnerabilities have been well studied, detect-
ing general AC vulnerabilities remains difficult. To manifest an AC
vulnerability, it is necessary to reason about the running time of a
program over different inputs without concrete execution. It has

6Zip Bomb: https://www.theregister.com/2001/07/23/dos_risk_from_zip/

Acquirer: A Hybrid Approach to Detecting Algorithmic Complexity Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

been proven that computing discriminants to explain the different
execution time of a program is NP-hard [38].

Therefore, people analyze and compare different execution paths
in a program to detect AC vulnerabilities in practice. This task
would be difficult for a human analyst, because of the complexity
of determining the computation costs and the feasibility of a large
number of execution paths. Recently, researchers have focused
on developing automated or semi-automated tools to assist the
detection of general AC vulnerabilities, but these tools either report
many false positives or have low efficiency. Current approaches
can be classified as follows.

2.2.1 Code Structure Analysis. Code structure analysis detects AC
vulnerabilities by identifying program structures with variable exe-
cution time. Loops (and recursions) are code sequences that could
be executed repeatedly for an indefinite amount of time. This char-
acteristic makes them the common causes of AC vulnerabilities.
Therefore, previous works try to detect AC vulnerabilities using
static loop analysis algorithms [6, 44]. However, existing analyses
can only provide a sound result for a limited type of loop. They do
not work well for analyzing complex loops such as nested loops
and loops that contain intricate branches.

To the best of our knowledge, DISCOVER [7] is the state-of-the-
art static analysis tool for detecting AC vulnerabilities. It defines
and collects a list of loop characteristics for manual inspection by
an analyst. It can filter out a list of loops that are unlikely to lead to
AC vulnerabilities by statically analyzing their semantics. However,
it can analyze only basic loops (i.e., the loop body includes only
one basic block), but not complex loops that include other control
constructs, e.g., conditionals, jumps, and inner loops, as their control
flows are hard to be statically determined.

2.2.2 Computation Cost Analysis. The other approaches analyze
the computation cost of program execution paths and report the
paths with relatively high costs [8, 29, 30, 40]. Such approaches can
cover the cases that code structure analyses cannot model, but also
have their limitations.

Fuzz Testing. Fuzzing approaches generate diverse test inputs
to exercise different program paths for detecting high-cost paths.
Most fuzzers require significant engineering efforts to develop test
harnesses. A few works [8, 39] provide automatic test generation.
However, they either require an existing test harness defined by
humans [39], or generate artificial test harnesses for individual
methods that do not consider their calling contexts [8].

Besides, it is challenging for existing fuzzers to discover vulner-
abilities residing in very deep loops, as none of them is equipped
with AC vulnerability modeling. They generate offspring using
general feedback information like code coverage [8], the number
of executed instructions [33], or the most visited edges on a pro-
gram’s CFG [26]. Even though the state-of-the-art tool HotFuzz [8]
proposes to fuzz over individual methods to improve its efficiency,
its path exploration strategy is still inefficient. Thus it spends a lot
of time on visiting sub-optimal paths in the huge program space.

Symbolic Execution. Symbolic execution (SE) approaches exe-
cute the program with symbolic values that cover multiple possible
concrete values sharing the same execution path. Unlike fuzzers,

they can reason about paths containing deeply nested loops. How-
ever, they also have their limitations. First, SE engines can hardly
cover the entire software stack, including the runtime environment
and external code, which cannot be easily traced by the executor.
Second, it is computationally inefficient, especially compared to
concrete execution. The problem becomes aggravated because of
path explosion. In the extreme case that a program has indefinite
loops, the number of execution paths can become even infinite. To
mitigate this problem, some approaches propose to explore only
certain interesting paths according to some branch policies [10, 29].
Although such approaches have been demonstrated effective in
some simple benchmarks previously, we will show in §7.2 that the
state-of-the-art work [29] is still inefficient (especially for complex
programs) as it learns a branch policy from exhaustive search. Be-
sides, their implementations do not support unreachable code or
complex computation. Such cases cannot be directly handled by SE
engines. Researchers have to separately model them with an ex-
tra approximation design. Further, those works require significant
manual effort to set up a test, i.e., users have to write symbolic in-
strumentation and test harness for performing symbolic execution.

To address the fundamental limitations of general symbolic ex-
ecution, dynamic symbolic execution (DSE) has been proposed.
DSE mixes concrete and symbolic execution [5, 9, 13, 43, 45]. It is
also known as concolic testing [11, 20, 41, 42] or simply concolic
execution [10, 34]. To the best of our knowledge, Badger [30] is the
state-of-the-art technique that incorporates DSE in finding AC vul-
nerabilities, but it suffers from path explosion (§7.2). WISE [10] is a
particular concolic execution tool that runs symbolic and concolic
execution separately. For each target program, it first symbolically
finds a high-cost path, then concolically validates the path. It cannot
report a sub-optimal path when the validation fails, which makes
it likely to report nothing for complex programs.

3 PROBLEM STATEMENT

In this section, we first describe in detail the adversarial capabilities
and the type of AC vulnerabilities we focus on (§3.1), then discuss
our research goals and the research challenges (§3.2). Finally, we
provide the necessary definitions in our work (§3.3).

3.1 Threat Model

In this work, we assume a program containing AC vulnerabilities,
which can be exploited with external user inputs for DoS attacks.
The vulnerable program may accept user input from the program
arguments or the network. An attacker can trigger the AC vulnera-
bilities and lead to a DoS by manipulating these inputs.

We do not specifically target well-studied types of AC vulnera-
bilities (e.g., in a regular expression engine or a math library) that
existing specialized tools cover [17, 27, 39], as we do not assume
the same domain knowledge as they do. However, detecting such
vulnerabilities is still in our problem scope when the source code is
available.

We focus on AC time vulnerabilities and do not target AC space
vulnerabilities, as we assume the attacker launches a DoS attack by
consuming CPU resources. Besides, we assume routines regularly
performing costly operations cannot be utilized for an attack. In-
stead, the attackers might exploit routines that consume distinct

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yinxi Liu and Wei Meng

computation costs under different inputs. We will provide a precise
definition of such vulnerabilities in §3.3.

3.2 Research Goals and Challenges

In this work, we aim to develop a fully automated tool to detect
AC vulnerabilities. Specifically, we study how to model the AC
vulnerabilities through code patterns that can guide us to explore
two different-length execution paths selectively. Further, we aim to
eliminate the manual efforts needed in the vulnerability detection
workflow by developing a test harness generator, which would
allow us to detect vulnerabilities in a large number of programs
automatically. We do not claim that all the AC vulnerabilities we
report can be transformed into working AC exploits. For instance,
the worst-case path could be the typical execution path. We do aim
to design a tool with a relatively low false-positive rate compared
to state-of-the-art techniques. We face the following challenges.

3.2.1 Modeling AC Vulnerabilities. Inspired by DISCOVER [7], we
aim to build an effective detection tool by modeling AC vulnera-
bilities. As we mentioned in §2.2.1, existing static analysis cannot
well reason about the possible control flows inside a complex loop.
Dynamic approaches would work better for that and can calculate
the computation costs. However, it remains difficult to efficiently
determine which control flows are vulnerable. Proposing vulner-
able code patterns that apply to distinct programs with different
computation costs would be quite challenging.

3.2.2 Path Explosion. Symbolic (or concolic) execution can help
reason the reachability (or even the exploitability) of a vulnerable
code block, but a substantially high number of execution paths
potentially need to be explored. In many conditions, exploring
all these paths is not feasible. To mitigate this problem, we need
to focus on a limited number of paths among a huge number of
possible choices. However, determining which paths to explore, i.e.,
finding the potentially vulnerable paths, is difficult without good
modeling of the vulnerable code patterns.

3.2.3 Automated Testing. In order to determine the computation
cost differences of the potential vulnerabilities, it is necessary to
conduct dynamic analysis. Dynamic analysis requires a test harness
to execute the program and generate the test cases. Since different
programs could have quite diverse logic and inputs, it is challenging
to automatically generate a compatible test harness for each pro-
gram. For instance, all the state-of-the-art dynamic analysis tools
[26, 30, 33, 40] except for HotFuzz [8] require manual test harness
configuration. Even if a test harness is available, it would still be
difficult to generate test cases for efficiently searching for the high
computation-cost paths.

3.3 Definitions

In this section, we first formally define the AC vulnerabilities we
study in this work, then present the definitions of conditionals and
branch policy generators that we will use in the latter sections.

3.3.1 AC Vulnerability. Following Crosby and Wallach [14], we
define an ACwitness as two inputs of the same size for the same pro-
gram or function that would cause very different computation costs.
We do not identify expected deterministic lengthy computations as

they cannot be exploited for DoS attacks. However, this definition
is not specific enough to distinguish a huge computation cost differ-
ence caused by vulnerabilities from a moderate one caused by noise
or randomness. We need to apply a threshold for the computation
cost difference to detect AC vulnerabilities practically.

To this end, we first propose to use a threshold for the abso-
lute difference in computation cost under inputs of a specific size.
However, since different programs may perform quite distinct oper-
ations consuming various resources, a fixed absolute cost difference
threshold cannot be applied to all programs. Therefore, we also
use a threshold for the relative difference in computation cost under
inputs of a certain size. We report an AC vulnerability only when
both the absolute and relative computation cost differences exceed
the respective threshold. Since the accurate execution time might
be challenging to measure (especially in symbolic execution), we es-
timate the computation cost by measuring the number of executed
instructions in JVM. For simplicity, we assume all instructions have
(approximately) the same order of computation costs. The real cost
would be architecture-specific. The choices of the thresholds are
studied in §7.2.

3.3.2 Conditionals and Branch Policy Generators. We define condi-
tionals and branch policy generators to help perform selective path
exploration. Conditionals (or conditional statements) are common
control constructs for conditionally executing different instruction
sequences in a programming language (e.g., the if-else statement). A
branch policy instructs an execution engine to execute a particular
branch of a conditional.

Each conditional has a condition, a true branch and a false branch.
Conditions are logical phrases (e.g., i > 0). The value of a condition
(or branch choice) can be either true or false.

When symbolic execution reaches a conditional, it will perform
differently according to the value of its condition. A branch policy
generator produces a branch policy for a conditional. The policy
specifies the condition’s value, hence the branch to be taken.

4 CODE PATTERN FOR COST DIFFERENCE

In this section, we present the rationale of our AC vulnerabilities
modeling through conditional patterns (§4.1) and the types of con-
ditionals we consider (§4.2).

4.1 Preliminaries

As we mentioned in §3.3, this paper defines AC vulnerability using
the difference in computation cost between two execution paths. In
general, a longer path is likely to have a higher computation cost
than a shorter one. We consider using different branch choices to
represent distinct paths, as a path can be uniquely identified by the
branch choices it takes for the corresponding conditionals.

Existing work has shown that for many algorithms, the worst-
case path can be captured by constantly taking particular branch
choices for the conditionals [10, 29]. For example, in Listing 1,
the worst-case path constantly takes the true branch of the while
loop. However, their approach is inefficient, as they learn branch
choices through an exhaustive search (§2.2.2). To address such
an inefficiency issue, we investigate whether the constant branch
choices can be learned without an exhaustive search, from which
we can then explore slow/fast paths accordingly. By analyzing

Acquirer: A Hybrid Approach to Detecting Algorithmic Complexity Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

the STAC dataset, we validate that the worst-case path typically
contains certain conditionals that take determined choices across
different iterations— 31 out of 36 AC vulnerabilities in the STAC
dataset contain at least one such special conditional. Therefore, for
these conditionals, we can take a pre-determined strategy to make
the particular choices for finding a slow path, and similarly find a
fast path by making the opposite choices.

We define next code patterns for such special conditionals to help
identify the potential AC vulnerabilities without prior knowledge.

4.2 Vulnerable Conditional Patterns

We consider a conditional vulnerable if one of its branches is likely
to require a considerably higher computation cost (i.e., number of
instructions) than the other(s). We focus on conditional patterns
related to loops and recursions, because these two common struc-
tures are the leading causes of high algorithmic complexity (and
therefore AC vulnerabilities). For simplicity, in the following sec-
tions, we discuss only the loop-based patterns. The recursion-based
patterns are almost identical as both loops and recursions are circles
in the global CFG we build (see §5 for details).

To detect AC time vulnerabilities, we first identify vulnerable
conditionals exhibiting huge computation cost difference. The cost
difference generally comes from different numbers of loop iterations
or different numbers of executed instructions in each iteration.
Consider the insertion sort example in Listing 1, It consists of two
loops, i.e., the outer for loop and the inner while loop. Intuitively,
both loops should be taken asmany rounds as possible to allowmore
instruction execution. Therefore, in each round, their condition
values (the values of i < N and (j >= 0) && (a[j] > x)) should be
true. On the contrary, if the loop conditionals take the false branch,
the loop execution will be terminated immediately, leading to lower
execution costs. From another perspective, for each iteration of the
outer for loop, the number of executed instructions is larger when
the inner while loop is true rather than false.

We attempt to consider as many cost difference situations as
possible and summarize them as the following vulnerable patterns.

4.2.1 Non-Determined Loops. A non-determined loop might run
in an unknown amount of time. Its execution (or termination) is
usually determined only at runtime by dynamically evaluating some
condition expressions. In particular, a loop has loop termination
conditionals whose branch choices determine if the execution of
the loop shall be terminated. For example, the while statement
of a while loop is a loop termination conditional; the conditional
that has a break construct in a branch is also a loop termination
conditional. The computation cost can increase substantially by
taking the non-termination branches compared to terminating the
loop execution early, as additional instructions could get executed.

4.2.2 Single-Branch Conditionals in Loops. Some conditionals in
the loop have only one branch, e.g., an if conditional without the
else branch. Therefore, the computation cost difference, which is
the number of instructions in that only branch, could be quite large
if this branch is taken. Such conditionals are labeled vulnerable, as
taking the only branch is favorable in finding a slow path.

4.2.3 Termination-Branch Conditionals in Loops. Some control con-
structs, i.e., return and throw statements, would terminate the func-
tion execution (hence the loops containing them) immediately. A
branch with such constructs could have a lower cost than the others
since the remaining instructions in the loop and function will not be
executed. We call such a branch a termination branch. Conditionals
with a termination branch are considered vulnerable. A slow path
would avoid these branches. Such termination-branch conditionals,
i.e., the exceptions, are also avoided in searching for the fast paths
to prevent early abnormal return or termination.

Conditionals with a throw statement that would get caught inside
the same loop body are not considered vulnerable because the
loop iteration might continue after handling the exception. When
an exception is thrown and caught (e.g., a try-catch block), the
exception handling code may have a higher cost compared to the
normal execution (in the try block). However, it is outside the scope
of this paper because the computation costs of the exceptions are
affected by the program’s execution environment.

5 ACQUIRER

We develop Acqirer to address the limitations of the prior works
we have introduced in §2. Acqirer employs a hybrid analysis
to effectively detect AC vulnerabilities, following the workflow in
Figure 1. It statically identifies the vulnerable code according to the
pattern defined in §4 with an inter-procedural analysis, and gen-
erates branch policies for the vulnerable conditionals accordingly
(§5.1). It then performs DSE following the branch policies to search
for a slow path and a fast path and validates their computation cost
difference (§5.2). Acqirer also enables full automation by gener-
ating a test harness for each potential vulnerability (§5.3). Besides,
to speed up the analysis of real-world applications that contain a
large number of loops, it can optionally filter some non-vulnerable
loops for generating fewer test harnesses (§5.4).

5.1 Branch Policy Generation

We develop a static analysis to generate branch policies for discov-
ering the fast and slow paths. A policy can favor either the branches
leading to long (slow) execution paths or those leading to short
(fast) execution paths. In the following, we generate slow policies in
favor of the slow paths. Similarly, the fast policies for fast paths can
be generated by negating the branch choice at each conditional.

The inter-procedural analysis is conducted over a global CFG
we construct from the compiled bytecode of the target program.
We enhance the global CFG with a call graph, where the call target
at a call site includes all the possible callees for polymorphic calls.
Therefore, both loops and recursions can be identified as circles on
the enhanced global CFG graph. To enable a precise cost estimation,
we expand the source code of a called function on the CFG as an
inline function. Acqirer additionally supports the analysis of
high-cost external methods with user annotation (§5.4).

We use the same insertion sort example in Listing 1 with its
CFG in Figure 2 to illustrate how Acqirer generates slow branch
policies. Specifically, it first determines a value for each condition
of the vulnerable code patterns (§5.1.1), then generates a branch
policy for a single loop or recursion structure (§5.1.3), and finally
generates a policy for a function (§5.1.4).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yinxi Liu and Wei Meng

Java Class

Control Flow Graph
Construction

Loop Policy
Generation

Function Policy
Generation

STATIC
BRANCH POLICY GENERATION

Branch
Policy

Generators

Path Exploration

Path Difference
Validation

Vulnerability Report

DYNAMIC
SELECTIVE SYMBOLIC EXECUTION

Instrumented
Code with Config

Compile

Loops & Recursions

Source Code
Identification

Calling Context
Construction

Symbolic
Instrumentation

TEST HARNESS GENERATION OPTIONAL LOOP FILTERING

Potential
Vulnerable

Loops

Loop Filtering

Loop Reachability
Analysis

Figure 1: An architecture overview of Acqirer.

0: ALOAD_a
1: ARRAYLENGTH
2: ISTORE_N
3: ICONST
4: ISTORE_i
5: GOTO 38

38: ILOAD_i
39: ILOAD_N
40: IF_ICMPLT 6

41: RETURN

31: ALOAD_a
32: ILOAD_j
33: ICONST
34: IADD
35: ILOAD_x
36: IASTORE
37: IINC 2 , 1

15: ALOAD_a
16: ILOAD_j
17: ICONST
18: IADD
19: ALOAD_a
20: ILOAD_j
21: IALOAD
22: IASTORE
23: IINC 3 , -1

26: ALOAD_a
27: ILOAD_j
28: IALOAD
29: ILOAD_x
30: IF_ICMPGT 15

24: ILOAD_j
25: IFLT 31

6: ILOAD_i
7: ICONST
8: ISUB
9: ISTORE_j
10: ALOAD_a
11: ILOAD_i
12: IALOAD
13: ISTORE_x
14: GOTO 24

ENTER InsertionSort.sort

EXIT InsertionSort.sort

true

false

truefalse

true

false

Figure 2: CFG of the Insertion Sort algorithm.

5.1.1 Determining Branch Choices. Discovering a slow path typ-
ically involves making branch choices for multiple conditionals.
Acqirer first identifies the vulnerable conditional patterns in §4
from the global CFG by visiting the directed circles and their linked
conditionals. A directed circle is a loop (or recursion). The termina-
tion conditionals of a loop are the ones that have edge(s) connecting
to code blocks outside the loop. In Figure 2, block 24-25 is a termi-
nation conditional of the while loop. Acqirer can also identify
the termination-branch conditionals by searching for return and
throw blocks (e.g., block 41) in the loop circle. Similarly, Acqirer
identifies the single-branch conditionals by finding the conditionals
with two distinct transition paths to the same destination block,
including a transition path consisting of a single edge. Block 24-25
is also a single-branch conditional as it can transit to block 31-37
through either the true branch or a path through block 26-30.

For each identified vulnerable conditional pattern, Acqirer
then takes the higher-cost branch. It sets the loop termination con-
ditionals to continue the loop iteration, and takes the only branch
of the single-branch conditionals to execute additional statements.
If one conditional is involved in multiple patterns, it will merge the
branch choices from different patterns into a determined one for
maximizing the overall cost. For example, there are three loop termi-
nation conditionals (38-40, 24-25 and 26-30) and two single-branch
conditionals (24-25 and 26-30) in Figure 2. Their corresponding
condition values should be: condition 40 - true; condition 25 - false;
condition 30 - true; condition 25 - false; condition 30 - true.

5.1.2 Resolving Branch Choice Conflicts. In the above example, the
branch choices of the two conditional patterns do not conflict with
each other. However, sometimes, multiple vulnerable conditional
patterns may conflict, such that selecting a slow branch of one
conditional may lead to a fast branch of another conditional. We
illustrate with the following examples and discuss how Acqirer
handles such cases.

1 while (condition_a) {
2 if (condition_b) {
3 ...

4 break;
5 }

6 ...

7 }

Listing 2: A conflict example between vulnerable patterns.

Conditional in Loop. In Listing 2, the if conditional in the while
loop is both a single-branch conditional and a loop termination
conditional. On the one hand, to execute the only branch of it,
condition_b shall be assigned true. On the other hand, to not ter-
minate this loop, condition_b shall be assigned false. To resolve
such conflicts, Acqirer prioritizes termination-branch condition-
als over non-determined loops, then over single-branch condition-
als to not terminate the function execution and the loop iteration.
Accordingly, to find a longer slow path, condition_b is assigned false.

Besides, a path may contain multiple loops, which conflict with
each other. We discuss the following two types of such cases.

Alternative Loops. Alternative loops are loops in different branches
of the same conditional. They cannot be executed on the same path.
In Listing 3, the first loop gets executed when condition_a is true;
the second loop gets executed, otherwise. Therefore, Acqirer
considers each of the alternative loops separately.

1 if (condition_a) {
2 ... // Execute Loop 1

3 } else {
4 ... // Execute Loop 2

5 }

Listing 3: A conflict example in alternative loops.

Acquirer: A Hybrid Approach to Detecting Algorithmic Complexity Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Nested Loops. When one loop is nested within another, the con-
dition to reach the inner one may also lead to the termination
of the outer one. In Listing 4, the inner loop is reachable when
condition_b is true, but the outer loopwould be terminated.Acqirer
gives the inner loops a lower priority than the outer ones.

1 while (condition_a) { // Loop 1
2 if (condition_b) {
3 while (condition_c) {...} // Loop 2
4 break;
5 }

6 }

Listing 4: A conflict example in nested loops.

There may exist other conflicting cases that we do not discuss,
e.g., when the logical value of one condition is determined to be op-
posite to another one. However, we believe that the above strategies
cover the most common scenarios.

5.1.3 Loop-level Policy. In the previous step, each condition in
the vulnerable conditional patterns is assigned a concrete boolean
value to specify the choice of the longer/slower branch. Acqirer
then constructs a set of condition-to-value maps for each loop in
favor of the longer/slower paths accordingly. Specifically, we visit
each loop 𝐿 in the global CFG and collect all the concrete logical
values assigned to its containing conditions 𝐶 . We build a map
𝑀𝐿 : 𝐶 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} accordingly. In our previous example,
there are two loops. The while loop contains two conditions 25
and 30, which are assigned false and true, respectively. Its final
condition-to-value map is {25→ 𝑓 𝑎𝑙𝑠𝑒, 30→ 𝑡𝑟𝑢𝑒}. Similarily, the
map of the for loop is {25→ 𝑓 𝑎𝑙𝑠𝑒, 30→ 𝑡𝑟𝑢𝑒, 40→ 𝑡𝑟𝑢𝑒}.

5.1.4 Function-level Policy. We learn a (slow) branch policy for a
function from the (slow) policies for the loops it contains. Firstly,
we update loop policies by considering the branches that need to
be taken to reach the loops, and then we generate function policies
using the loop policies.

Reaching Vulnerable Loops. We update a loop policy by consider-
ing outer conditionals that are related to its reachability. Starting
from the loop head block, Acqirer transits backward towards the
function entry block. Along the transition, it updates the condition-
to-value map from the edges with a logical value.

In the example, the while loop is nested in the for loop,Acqirer
transits from block 24-25 to block ENTER, and would go through the
true branch of the conditional 38-40. Therefore, the condition-to-
value map of the while loop should be updated by adding {40→
𝑡𝑟𝑢𝑒}. The for loop is not nested in other conditionals, its condition-
to-value map would not be updated.

Generating Function Policy. After updating the loop policies, we
generate a function policy from the loop policies. When a function
has only one loop, the function policy is the loop policy. When it
has multiple loops, we merge all the non-conflicting loop policies
to maximize the potential cost of the entire function. Otherwise, we
separately produce multiple policies from the loops, which would
be consumed independently in different test harnesses. In particular,
the branch choice of each condition in the function is determined
jointly by the two maps in the loop policies. In the example, two
updated loop policies are the same (not conflicting), therefore, we

can produce a single policy for the sort function, i.e., {25→ 𝑓 𝑎𝑙𝑠𝑒,

30→ 𝑡𝑟𝑢𝑒, 40→ 𝑡𝑟𝑢𝑒}.

5.2 Selective Dynamic Symbolic Execution

Acqirer selectively explores a slow path and a fast path in a
program guided by the corresponding branch policies in its dynamic
symbolic execution. It then measures and compares the absolute
and relative computation cost differences of the two paths to report
a vulnerability.

5.2.1 Selective Path Exploration. Acqirer progressively explores
a slow path given a slow branch policy. The slow policy instructs the
dynamic symbolic execution to take branches that lead to higher
computation costs. Acqirer builds and maintains a path con-
straint when it takes the next branch at each conditional (including
a loop) following the branch policy. It then queries a constraint
solver to produce a solution for the path constraint. If a solution
can be found, it continues to the next conditional on the path until
no satisfying solution can be generated by the solver (within a time
budget). The final solution represents the concrete values (or even
exploits) to take this slow path. Similarly, Acqirer can explore
a fast path following a fast branch policy, which takes the other
branches with lower computation costs.

Some conditional in the branch policies may not be assigned a
choice. Acqirer first takes a random branch and backtracks to
another branch if more vulnerable conditionals can be executed. It
does take the same random branches when exploring the slow and
fast paths to ensure the computation cost difference is caused by
only the vulnerable conditionals.

5.2.2 Vulnerability Validation. Acqirer dynamically measures
the computation cost difference between a slow path and a fast path
for finally reporting an AC vulnerability. Given the corresponding
path constraint solutions, Acqirer conducts concolic execution
using the concrete solution values and records the execution time
and the number of executed instructions along with the execution.
It then computes the absolute and relative cost differences and
reports a vulnerability according to §3.3.1.

To have a noticeable execution time difference in the production
environment, very large inputs (e.g., dozens of KBs) are usually
required. Due to the inherent limitation of symbolic execution, it
is very expensive and impractical to explore the paths using such
inputs. Nevertheless, we find in §7.2 that the number of executed
instructions is an effective metric to detect AC vulnerabilities.

5.3 Test Harness Generation

To ensure a fully automated analysis, we also develop a test har-
ness generation algorithm allowing Acqirer to analyze a target
program automatically. A test harness consists of a test execution
engine and the corresponding test scripts 7. The test script should
specify the function/method to invoke, and provide the necessary
calling context (e.g., objects, parameters, etc.).

Even though one can simply start the program execution from
the program’s entry point, vulnerable program states are hard to
reach from these entry points when the codebase gets large. There-
fore, exiting works [8, 29, 30, 40] generate test harness under an
7Test harness: https://en.wikipedia.org/wiki/Test_harness

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yinxi Liu and Wei Meng

artificial calling context. Instead of using the minimal calling con-
text like HotFuzz [8], or manually constructing a calling context
like the other works [29, 30, 40], we seek to automatically generate
a test program that provides the same calling context as the original
program but includes only the necessary functions/statements. This
is because the minimal calling context is less precise. A vulnerable
function might not be exploitable as the attack inputs are sanitized
in all contexts; whereas in an artificial test harness it might be
exploitable as arbitrary arguments could be provided, causing a
false positive.

We build our test program following this strategy: Starting from
the main/entry function, all functions that can invoke the target
function and its data-dependent functions are preserved. The irrel-
evant statements in those functions are removed.

A test script for running DSE needs to specify what variables to
be replaced by symbols in the DSE engine. We will discuss in §6.2
how we implement that through source code instrumentation.

5.4 Non-Vulnerable Code Block Filtering

We filter loops that are not likely to be vulnerable to AC DoS attacks.
This allows Acqirer to only explore a limited number of loops,
significantly reducing the analysis time.

Acqirer filters the following two types of loops conservatively.

5.4.1 Unreachable Loops. To exploit a vulnerable loop for launch-
ing AC DoS attacks, it must be reachable in the program, i.e., there
shall exist a feasible execution path from the program entry point(s)
to the loop. We aim to exclude unreachable loops from the heavy
test harness generation and instrumentation, but it is very difficult
to statically determine the reachability of arbitrary code blocks in a
program. Therefore, Acqirer filters only the ones that definitely
cannot be executed— their containing function cannot be invoked
from any program entry point(s). We do not leverage symbolic exe-
cution for its expensive computation cost. Besides, this simple rule
can already help Acqirer exclude the majority of unreachable
loops from dynamic analysis.

5.4.2 (Almost)-Constant Cost Loops. Some loops have almost con-
stant computation costs when inputs are of the same size, so they
are unlikely to lead to significant computation cost differences. All
possible paths in such loops require almost the same computation
time. We consider the following types of such loops. Note that
we filter only loops for which we can statically determine their
conditional values.

Determined Loops. A determined loop runs a fixed (small) num-
ber of iterations under all user inputs. For example, a simple loop
for (i=0; i<6; i++) is a determined loop if the iterator i is not
changed inside the body. Acqirer filters loops whose iterator/-
counter changes monotonically in each iteration and is bounded
by a constant value. In some special cases, the iterator/counter is
bounded by a variable. As long as the variable is also bounded by a
constant, the number of loop iterations is still determined.

Single Block Loops. A single block loop has only one basic block
in its loop body. As a result, the same number of instructions is
executed in each iteration. Even if the number of iterations might
be affected by user inputs, the computation cost of the loop under

inputs of the same size should be constant. However, the basic block
might contain external method calls with non-trivially high costs.
To analyze these special cases, users can mark high-cost method
calls by passing a simple flag -c {file}#{line}:.... Acqirer will
then not filter the marked loops. This mechanism is implemented
but not adopted in the evaluation, as we do not assume such knowl-
edge is always available and for a fair comparison with other tools.

6 IMPLEMENTATION

We implement a prototype of Acqirer for efficiently and accu-
rately detecting AC vulnerabilities in Java programs. We choose
Java as it has been a staple programming language for a long time.
We implement our selective DSE based on the symbolic execution
tool Symbolic PathFinder (SPF) 8, which is a DSE prototype that re-
quires source-code level instrumentation. We present the essential
technical details in the following.

6.1 Calling Context Construction

As the first step of test harness generation, for a target function
Acqirer generates a test program that provides the same call-
ing context in the original program. To preserve all control- and
data-dependent functions of a target vulnerable function (§5.3),
we build a partial system dependence graph (SDG) to analyze the
control- and data-dependency. We implemented a complete SDG at
our early research stage, and later found a simpler one is sufficient
for generating the test harness targeting a specific function. We re-
tain all the flow reasoning mechanisms (including object points-to
analysis, type inference, and caller-callee matching) and incremen-
tally build the partial SDG. Our on-demand analysis takes only a
few seconds to analyze the most complex application in the STAC
dataset, whereas building a complete SDG requires more than ten
minutes. These flow reasoning mechanisms are implemented by
searching for mapped objects from the Java compilation units. To
support method calls through Java reflections and dynamic ‘invoke’,
we analyze the program’s XML bean configuration to identify the
objects (and methods) that are loaded dynamically.

The test harness of a Java program includes the code to instanti-
ate the objects and invoke the corresponding functions andmethods.
In the case that Acqirer has to generate the object instantiation
code, e.g., to instantiate the receiver object of the implicit han-
dler function, it leverages the existing object instantiation code if
available, or calls the default constructor of its class. We conduct
type inference for the objects in the data flow to learn the subclass
they refer to, then invoke the target methods through caller-callee
matching. Some arguments in the object instantiation code also
need to be constructed similarly.

In some cases, an explicit calling context of a function cannot be
directly found in the source code. For instance, some functions are
registered as handlers and callbacks, and are implicitly dispatched
when certain events happen. To test such functions,Acqirer iden-
tifies the dispatchers and generates the necessary code for invoca-
tion. For external code, including external libraries and other envi-
ronments, Acqirer monitors the referred classes by constructing
a new class for replacement. The new class functions as a binding
layer. It implements all the methods invoked in the source code and
8Symbolic PathFinder: https://github.com/SymbolicPathFinder/jpf-symbc

Acquirer: A Hybrid Approach to Detecting Algorithmic Complexity Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

1 public static void main(String[] args) {
2 final int N = 128; int[] a = new int[N];
3 for (int i = 0; i < N; i++)
4 a[i] = Debug.makeSymbolicInteger("args[i]" + i);
5 // before: a[i] = args[i];
6 sort(a);
7 }

Listing 5: An entrance example after symbolic instrumentation.

performs the same behavior by calling the external code. We extend
the methods further in the code instrumentation step to support
symbolic execution.

6.2 Code Instrumentation

Acqirer needs to further instrument the test harness to symbolize
some variables (e.g., program and function arguments) for symbolic
execution. SPF has a Debug class to generate symbolic variables
in primitive types, e.g., Integer. We extend the primitive types of
SPF to make it support some other commonly used types, e.g.,
java.math.BigInteger. A primitive type variable can be directly
replaced with a symbolic variable of the same type. We explain such
instrumentation with Listing 5, which is the instrumented entry
of the test harness for the sort function in Listing 1. Line 4 was
a[i] = args[i];. Acqirer replaces args[i] with a symbolic integer
created by Debug.makeSymbolicInteger("args[i]" + i);. A class object
is instantiated from a constructor. The primitive-type arguments of
the constructor can be similarly made symbolic. The type of some
variables might be unknown. Acqirer can only initialize them
as null. The instrumentation of instantiation of a type 𝑇 can be
summarized as follows.

𝐼 (𝑇) =

symbolic variable , if 𝑇 is primitive
𝐼 (𝐼 (𝑇0), 𝐼 (𝑇1), . . .) , if 𝑇 is a known class
𝑛𝑢𝑙𝑙 , otherwise.

To approximate complex operations such as string operations,
Acqirer replaces them with symbolic variables of the same type.
For instance, consider a new example String s = complex_comp(sym)
; where a function performs operations on the symbolic variable
sym, the right assignment operand is replaced with a new symbolic
string.

Acqirer similarly approximates the external code. In the call-
ing context construction, each external class is replaced with a new
local class, whose methods invoke the external code. SPF cannot
handle the symbolic variables in such methods as the detailed com-
putation in the external code is unknown. Therefore, when these
methods accept a symbolic variable as a parameter, we directly re-
turn a new symbolic variable of the return type instead of invoking
the external code.

6.3 Dynamic Symbolic Execution

Acqirer drives SPF to run mixed symbolic and concolic execu-
tion toward a specified target following the corresponding branch
policies. Along with the symbolic execution, it collects constraints
from not only the conditions (and their corresponding values) it
meets, but also all the direct or indirect data and control dependen-
cies of the variables in these conditions. Using these constraints,
Acqirer can assign a concrete value for each symbolic variable. It
then validates the slow and fast execution paths with these concrete
values in concolic execution.

7 EVALUATION

We extensively evaluate the effectiveness of Acqirer. We first
demonstrate its effectiveness in verifying known AC vulnerabili-
ties under several standard benchmarks (§7.2) in comparison with
existing tools. We further show that it can automatically detect
(unknown) vulnerabilities from a widely-used large dataset con-
taining 45 applications (§7.3) and characterize the vulnerabilities
(§7.4). Finally, we apply it to detect unknown AC vulnerabilities in
popular real-world applications (§7.6). We describe the experiment
setup next.

7.1 Datasets and Setup

We compare Acqirer on vulnerability detection effectiveness and
efficiencywith four state-of-the-art AC vulnerability detection tools:
1) Singularity [40], a pattern fuzzing tool for detecting the worst-
case complexity of a program; 2) SPF-WCA [29], a worst-case path
learner based on symbolic execution; 3) Badger [30], a complexity
analysis tool based on fuzzing and concolic execution; and 4) Hot-
Fuzz [8], a method-level genetic fuzzing tool for AC vulnerability
detection.

All the tools had been evaluated on the DARPA Space and Time
Analysis for Cybersecurity (STAC) dataset, which collects programs
vulnerable to AC attacks and side-channel attacks. However, only
HotFuzz was able to automatically analyze the entire dataset, while
the others selected several benchmarks extracted from the dataset
in their evaluation. Nevertheless, we are unable to apply the three
tools to the entire dataset. First, they cannot run automatically.
They require significant manual efforts on instrumentation, writing
test harnesses, and verifying the result for each case. These test
harnesses are not included in their released code [1–3]. Second,
SPF-WCA and Badger use manually-written custom test harnesses
and drivers to analyze a known vulnerable function. It would be
very difficult to use them to detect unknown vulnerabilities. Besides,
the design of the test drivers affects their performance significantly.
As a result, we are unable to conduct a fair comparison with them
on the full STAC dataset.

Therefore, we include another dataset—the Worst-case Inputs
from Symbolic Execution (WISE) benchmark dataset [10], which we
obtain from [1]. It contains the implementation of nine algorithms
of different complexities. Singularity and SPF-WCA analyzed the
entire WISE dataset, and Badger verified two benchmarks from it.

AsHotFuzz is not publicly available, we compare it withAcqirer
using their results on the STAC dataset in the paper [8]. We also
discuss the vulnerabilities that other tools verified on the STAC
dataset. The STAC dataset we use contains two sets of engagement
challenges including 45 programs: Engagement_2 and Engagement_4.
We use the WISE dataset for comparison with the other three tools.

All the experiments were performed on an 8-core Intel Xeon
W-2123 desktop with 16 GB RAM running Debian 10.

7.2 Benchmark Analysis

We use the benchmarks in the WISE dataset to learn the thresh-
olds used by Acqirer for detecting AC vulnerabilities. We also
include the commonly tested Insertion Sort algorithm in the eval-
uation. We compare with Singularity, SPF-WCA and Badger on the
efficiency of analyzing the worst-case performance of an algorithm.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yinxi Liu and Wei Meng

Table 1: Detailed evaluation result of the benchmarks.

Benchmark Input Size (N) Absolute Diff. Relative Diff. Complexity Range
Sorted Linked-List 50 13,975 3.46 𝑂 (𝑛) −𝑂 (𝑛2)
Heap Insert 1000 372,377 4.41 𝑂 (𝑛) −𝑂 (𝑛 log𝑛)
Red-Black Tree 1000 16,463 1.02 𝑂 (𝑛 log𝑛)
Quicksort 60 14,157 2.34 𝑂 (𝑛 log𝑛) −𝑂 (𝑛2)
Binary Search Tree 40 13,533 3.87 𝑂 (𝑛 log𝑛) −𝑂 (𝑛2)
Merge Sort 1000 53,160 1.62 𝑂 (𝑛 log𝑛)
Bellman-Ford 9 29,410 6.09 𝑂 (𝑛) −𝑂 (𝑛3)
Dijkstra’s 30 52,583 5.75 𝑂 (𝑛 log𝑛) −𝑂 (𝑛2)
Traveling Salesman 7 197,544 36.7 𝑂 (𝑛) −𝑂 (𝑛!)
Insertion Sort 50 20,531 4.65 𝑂 (𝑛) −𝑂 (𝑛2)

Table 2: Average Analysis time on the WISE dataset.

Acqirer SPF-WCA Badger Singularity
Avg. Analysis Time 92.6 secs 16.5 mins 87.1 mins 3 hrs

7.2.1 Results. The overall results are shown in Table 1. For each
benchmark, Acqirer can find the worst-case complexity (slow)
path and the best-case complexity (fast) path.

Suppose 𝑇𝐴 and 𝑇𝑅 are the absolute and relative computation
cost difference thresholds, respectively. We empirically determine
their values according to the results of algorithms with variable
best-case and worst-case complexities. These thresholds are then
used to evaluate Acqirer on the STAC dataset and real-world
apps. In particular, the Red-Black Tree and Merge Sort algorithms
have the same best-case and worst-case complexity. We filter these
two cases and preserve the others by setting 𝑇𝐴 = 1𝑒5 and 𝑇𝑅 = 2.

For the following experiments, Acqirer iteratively tries input
sizes ranging from 10 to 1000 (i.e., [10, 20, 50, 100, 200, 500, 1000]),
and stops when it meets a vulnerability. We set a maximum two-
minute validation time for each input, regardless of the input sizes.

7.2.2 Comparison. We present the average analysis time of each
tool in Table 2. Singularity, SPF-WCA and Badger can find the worst-
case inputs/paths of these algorithms because they can fall back
to an exhaustive path search strategy. However, their performance
was rather slow. For example, Singularity spent three hours on each
benchmark. Even though it could find the worst-case input with
𝑁 = 1000 for all cases, it was less efficient for vulnerability detection,
which we further compare in §7.3. Badger runs more efficiently than
a traditional fuzzer by integrating a concolic execution. For the case
Insertion Sort, it generated an input to cause a slowdown close
to the worst-case after 61minutes. However, the concolic execution
did not find the worst-case input, because it could explore only a
few inputs within a fixed time budget.

In comparison, Acqirer can complete the analysis more effi-
ciently. It tookAcqirer only 97.012 seconds to find the worst-case
path of Red-Black Tree with 𝑁 = 1000, and less than a minute for
all other benchmarks. In practice, Acqirer can detect and vali-
date a vulnerability in several minutes. We will further discuss its
performance advantage in §7.3.4.

Comparing to Badger, Acqirer could find the worst-case input
(𝑁 = 64, the size chosen in Badger) of Insertion Sort in only
126.74 seconds. For Quicksort, Badger took between 20 and 150
minutes to get its best slowdown. Other symbolic execution tools
like SPF-WCA (and WISE) also did not perform well in this case.
These tools would conduct an exhaustive search on a small input
size to help the worst-case search in larger input sizes. However,
the Merge Sort behaves differently for 𝑁 ≤ 7 and 𝑁 > 7, forcing
them to conduct an inefficient exhaustive search on 𝑁 = 8.

Table 3: Vulnerability detection on the STAC dataset.

Tool # of TP # of Report Precision Analysis Time
HotFuzz 5 57 0.078 16.5 hrs
Acqirer 22 41 0.537 3.8 hrs

+11 +0.268 (with validation)

7.3 Automatic Vulnerability Detection

We evaluate the effectiveness of Acqirer in detecting AC vulnera-
bilities using the STAC dataset. We first introduce additional dataset
information, then conduct comparison with HotFuzz and the other
tools, and finally evaluate the detection efficiency of Acqirer.

7.3.1 The STAC Dataset. The DARPA STAC dataset contains sev-
eral challenge problems for each program and provides a document
describing the vulnerabilities included. These challenge problems
ask whether a certain vulnerability exists in the program. The
dataset provides ground truth answers for these problems, but no
details about the specific vulnerable functions. Therefore, for a
challenge problem, we manually collect a set of corresponding vul-
nerable functions using two approaches: 1) if the exploit is provided
in the dataset, we apply the exploit and find the functions in the call
stack that match the description; 2) otherwise, we manually locate
vulnerable functions according to the description. We exclude non-
AC time vulnerabilities from the STAC dataset as all the other tools
do not handle non-AC time vulnerabilities, either. We conclude that
a vulnerability is a true positive if the reported function is among
the vulnerable functions we collect from the dataset.

Note that the public STAC dataset we use contains only 45 en-
gagement challenges, which are fewer than the 80 (including many
non-public ones) in the dataset HotFuzz used. In particular, the
challenge inandout_2, which HotFuzz reported as a true positive, is
not in our dataset. Even using a smaller dataset, Acqirer detected
more vulnerabilities with better precision.

We noticed many duplicate vulnerabilities in the STAC dataset.
These duplicates do not refer to different program functionali-
ties. Therefore, we deduplicate the vulnerabilities and report only
the unique ones. Specifically, many challenges with minor differ-
ences are from the same program, e.g., the program textcrunchr
contributes to seven challenges. The same vulnerable package
could also exist in different programs. snapbuddy, textcrunchr and
gabfeed all include package com.cyberpointllc.stac.hashmap, which
implements an unbalanced tree-based hash table. Besides, an ex-
ploit may invokemultiple vulnerable functions. For example, similar
worst-case conflicts exist in the hash insert and search algorithms.

7.3.2 Comparison with HotFuzz. The overall results are shown
in Table 3. Specifically, Acqirer detected 22 unique known vul-
nerabilities, and another 11 new ones that also have a noticeable
execution time difference. We manually verified all the vulnerabil-
ities Acqirer detected. We consider these previously unknown
ones as true positives because they have a more significant impact
than some known ones.

One new vulnerability lies in the EnigmaMachine class of the
textcrunchr_1 challenge. The encodeLine function visits every
character in the input s and selectively performs a heavy encod-
ing operation depending on the character value. We generated
an end-to-end exploit showing that the execution time difference
would be 5.6 seconds under a 130K-long string. It is more severe

Acquirer: A Hybrid Approach to Detecting Algorithmic Complexity Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 4: Benchmark verification on the STAC dataset.

SPF-WCA Badger Singularity In Total
of Verification 4 2 4 7

than a known vulnerability, which is a sorting algorithm with a
worst-case complexity 𝑂 (𝑛2). The sorting algorithm required an
over 200K-long string to reach the same 5.6-second execution time
difference.

Acqirer has higher precision than HotFuzz, because of the
following reasons. First, Acqirer verifies a vulnerability by com-
paring two paths instead of evaluating only the slow path perfor-
mance. Second, it avoids false positives caused by unreachable ones.
Third, it preserves as much context as possible in constructing test
harnesses to provide a realistic execution environment.

However, Acqirer still reported eight false positives (FP). Four
are related to the difficulty in manipulating the values in a set.
Specifically, in two cases, the worst case can occur only when a
user can manipulate the element order of a list. But this list is
converted from a set, so it would be hard to control the order. In
the other two FP cases, the worst cases exist when a list contains
duplicate elements, which are infeasible because they are converted
from sets. Another two FP cases contain complex operations that
were over-approximated in the code instrumentation. For the final
two cases, the worst-case paths are typical execution paths, while
the faster ones handle exceptions.We further discuss thatAcqirer
is more efficient than HotFuzz in §7.3.4.

7.3.3 Comparison with Other Tools. SPF-WCA, Badger and Singu-
larity verified 4, 2 and 4 cases, respectively, and 7 cases in total from
the STAC dataset. Acqirer performs better than all these tools
combined. It did not detect only one case related to an internal math
function, which does not contain any vulnerable code structures
we define. However, fuzzers (Badger and Singularity) could detect
it because they do not assume specific code patterns.

Singularity failed on the cases textcrunchr and airplan_3. For
textcrunchr, it can only learn sub-optimal patterns even using
a 1KB input. For airplan_3, the program itself took a long time,
exceeding the time budget. Acqirer succeeded in both because
its static analysis efficiently identified vulnerable code blocks.

Due to the limitationwewill discuss in §8,Acqirer cannot fully
automatically generate test harnesses for some cases, leading to 8
false negatives. However, with slight manual efforts like SPF-WCA,
Acqirer could still detect them in a semi-automated way.

7.3.4 Performance Analysis. Wemeasured the performance ofAcqirer
on analyzing the STAC dataset. It spent a total 3.8 hours analyz-
ing the entire dataset and validating reported vulnerabilities. It is
more efficient than HotFuzz, which took 16.5 hours on only fuzzing
before validation. Specifically, Acqirer’s static loop filtering and
test harness generation took 4.56 minutes (2%); the branch pol-
icy generation took 27.46 minutes (12%); the selective symbolic
execution took 3.268 hours (86%). The most expensive step is the
selective dynamic symbolic execution, as it would wait until both
the absolute and relative cost differences exceed the thresholds. In
practice, the absolute cost difference threshold could be quickly
passed for many cases. Acqirer spent most of the time exploring
paths to pass the relative cost difference threshold.

Table 5: Characterization of vulnerabilities in the STAC dataset.

Group Vulnerability Type Count Size / Time

Out of Scope
Math Computation 4 70KB / 1Ks
Regular Expression 1 5KB / 300s
Branch Only 1 800KB / 1.2Ks

True Positive

Graph Search/Computation 5 infinite loop
Sorting Algorithm 4 25KB / 500s
(De)-Compression 4 400KB / 300s
Unbalanced Tree 3 400KB / 150s
URL/XML parser 2 25KB / 500s
Score Computation 2 400KB / 300s
Logging 1 3KB / 30s
Spell Checking 1 2KB / 2Ks

Fail to Handle
Inherited Handler 5 400KB / 300s
Hash Collision 1 400KB / 300s
Others 2 5KB / 30s

7.4 Characterization of Vulnerabilities

We characterize the vulnerabilities in the STAC dataset by analyzing
all the 36 unique known bugs in the STAC documentation, and
present the results in Table 5. The last column shows the concrete
execution time under inputs of a certain size. For vulnerabilities of
the same type, we only show the severest result. In general, all the
vulnerable programs run for at least 30 seconds, showing that the
vulnerabilities could be exploited for DoS attacks.

The first group contains vulnerabilities that are out of our de-
tection scope, i.e., caused not by complex loops. Most of them are
about math computation. The complexity difference is in the math
library instead of the program source code in these cases. Another
case is about regular expression. The vulnerability lies in the ex-
ternal regex library. Existing works have studied this type of AC
vulnerability well [16, 27, 37]. The final case contains only branches.
The program performs some high-cost operations only when spe-
cific conditions are met. These operations do not have algorithmic
complexity differences.

All the other 30 cases involve vulnerable loop structures, show-
ing that loop-based AC vulnerabilities are common in practice. The
“True Positive” group includes the ones that Acqirer successfully
detected. We classified them according to their functionalities. We
highlight three types of functionalities that are commonly vulnera-
ble to ACDoS attacks: graph search/computation, sorting algorithm,
compression/decompression algorithm. These algorithms are vul-
nerable for two reasons: 1) graph computation algorithms typically
have different average-case and worst-case performances; 2) visit-
ing a node multiple times may potentially lead to an infinite loop.
Similarly, sorting algorithms have different average-case and worst-
case performances. Developers need to handle the worst-case inputs
to carefully mitigate these vulnerabilities. Compressors, parsers
and spell-checking would conduct different operations on different
inputs (of the same size). They can be even more vulnerable when
nested traversing (in compressors) and backtracking (in parsers)
are allowed. Existing works have discussed these vulnerabilities
in detail [18, 35]. The last group contains the cases our current
implementation of Acqirer fails to support.

7.5 Component-wise Analysis

We show earlier that Acqirer outperforms the state-of-the-art
techniques in efficiency and effectiveness. In this section, we pro-
vide a component-wise analysis to show how our design choices
contribute to the good performance of Acqirer. In general, the

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yinxi Liu and Wei Meng

Table 6: Loop filtering on the STAC dataset.

Avg. # of Filtered Loops 135
Avg. # of Filtered Functions 129
Avg. # of Remaining Functions 28
Avg. # of Filtered Code Blocks 3,527
Avg. Saved Analysis Time 12.8 mins

Table 7: Additional Strategies on the STAC dataset.

Total Conflict Resolution Calling Context Construction Code Summary
16 2 11 5

optional loop filtering and the selective dynamic symbolic execu-
tion ensure the high efficiency of Acqirer. The effective branch
policies, together with reasonable approximation in test harness
generation and constraint solving, enable Acqirer to effectively
detect AC vulnerabilities that prior works cannot find.
Optional Loop filtering. The majority of the non-vulnerable
loops (functions) could be optionally filtered by Acqirer while
introducing no false negative on the STAC dataset. We present the
number of filtered non-vulnerable code blocks and the saved time
on average in Table 6. Acqirer on average filtered the majority of
functions—129 functions, leaving only 28 functions to analyze on
average. Loop filtering prevents these 129 functions from being the
target of the costly concolic execution and saves us a large amount
of analysis time (69.7% or 12.8 minutes). At the same time, the
filtering does not introduce new false negatives on the STAC dataset.
We observe that most filtered loops are pretty simple (the loop
body contains less than three statements without any conditional).
Our filtering strategy can distinguish them well from vulnerable
patterns and save a lot of analysis time.
Selective Dynamic Symbolic Execution. Selective dynamic
symbolic execution is the foundation of our efficient and effective
detection. Without the proper guidance of the branch policies, the
execution time becomes significantly (8 times) higher, and many
vulnerabilities cannot be detected in a large amount of time. We
set a one-hour timeout for running without the guidance of branch
policy. The majority of previously detected cases fail under the
time limit when we disable branch policies. Acqirer can only
report 9 out of 41 cases compared to the analysis guided by branch
policies. The analysis time also rises 9.1 times (from 4.9 minutes to
44.7 minutes). This is because we would meet path explosion and
become unable to detect most cases within the time limit.
Additional Strategies. Our conflict resolution strategies, calling
context construction, and external code summaries also contribute
to the effectiveness of Acqirer. We list in Table 7 the number
of vulnerabilities that cannot be detected without these additional
strategies. The statistics show that the calling context construction
is the most critical component, without which 11 vulnerabilities
cannot be detected. This is because the vulnerable code blocks are
far from the program entry points. The SE engine would waste
most of its execution time exploring a path to the vulnerable func-
tion instead of searching for fast/slow paths. Besides, our external
code summary contributes to the detection of five vulnerabilities.
Without a proper code summary, we cannot run the SE engine to
analyze them as some objects cannot be resolved. Another two vul-
nerabilities require conflict resolution. We cannot produce a valid
branch policy for them without our conflict-resolving strategy.

7.6 Detecting Real-World Vulnerabilities

In this section, we show Acqirer can detect unknown vulnera-
bilities in real-world Java programs. We focus on Java web appli-
cations since they naturally accept user inputs and are potentially
exploitable. We searched on GitHub for popular (with more than
600 stars) Java projects using the keywords: “web app”, “web frame-
work”, “platform”, and “database”. We filtered out the irrelevant
projects manually and analyzed the remaining 46 applications.

Even though the real-world applications are much more com-
plex than those in the STAC dataset (the codebases are 7.4 times
larger on average), Acqirer can still effectively analyze them un-
der 18.2 minutes on average (only 3.2 times longer). This is because
Acqirer models the complex external code (environment) in the
constructed calling context and focuses on only a limited number
of non-determined loops. Acqirer reported 24 unique vulnerabil-
ities in the 46 applications. We manually verified the vulnerabilities
and found that 11 vulnerabilities could be transformed into AC wit-
nesses. We report a vulnerability when the worst-case performance
is evitable, i.e., we can provide an implementation that eliminates
the worst case and ensures the necessary functionalities. Five devel-
opers have already fixed the corresponding bugs according to our
patch suggestion. Two developers thanked our report but thought
it was not necessary for fixing such a potential performance issue.
The remaining four developers have not responded to our report.
We discuss several representative cases next.
Compressor. Hackpad (3.4K stars) is a web-based real-time wiki,
based on a collaborative document editor. One function extractDataUrls
in the CssCompressor class contains an AC vulnerability. An at-
tacker could use a specific input to trigger DoS on the server. Other
users of this web application would therefore get affected.

The code snippet tries to extract URLs from a given string by
finding terminator characters iteratively. However, it does not prop-
erly handle the case when the input string does not contain any
terminator. When a simple string without a terminator is provided,
e.g., "url(data::", the function would run forever.
Sorting Algorithm. Alink (2.8K stars) is a machine learning plat-
form developed in Java. The sortImpl function in its SparseVector
class contains an AC vulnerability. The function implements a
Quicksort algorithm with a center-most pivot. The average com-
plexity of this algorithm is𝑂 (𝑛 log𝑛), but a well-designedmalicious
input, e.g., the array [2, 4, 6, 8, 10, 11, 3, 7, 1, 9, 5] can exploit the
worst-case complexity of this algorithm, which is quadratic. A well-
designed input would take 11.94 more seconds to sort compared to
a random one when both inputs contain 300K elements.
Graph Computation. BTrace (4.7K stars) is a safe and dynamic
tracing tool for the Java platform. The findCycles function contains
a performance issue. For the worst case, the function would run
for 15.37 seconds with a 50K nodes graph input, which takes 15.32
seconds more than an average case.

The function implements a cycle detection algorithm that re-
moves nodes without outgoing edges in each iteration. The function
traverses all the nodes in the graph again whenever any change
is made (marked by the changesMade flag), which causes the time
consumption to be related to the input graph structure. For exam-
ple, it takes linear time on processing an acyclic graph input, but

Acquirer: A Hybrid Approach to Detecting Algorithmic Complexity Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

quadratic time for a chain graph of the same size. With massive
inputs, the time consumption difference can be considerable.

8 LIMITATIONS

Design Limitations. Our vulnerable code patterns do not cover
differential program behaviors caused not by conditionals, e.g., math
computation. Our summaries of external code and calling context
construction inevitably involve some approximation and may im-
port some false positives. Such an approximation does introduce a
few false positives in our test set (§7.3.2). Our conflict resolution
strategies are not comprehensive. They maximize the cost of only
some conditional patterns while neglecting others. This may bring
potential false negatives, as it prevents us from finding the slow
paths when the neglected patterns are more costly. However, we do
not observe such cases in our experiments. Further, the slow path
we report is not necessarily the worst-case path by definition, as
finding the worst-case path among all possible paths is NP-hard.
Nevertheless, we are confident that these slow paths are computa-
tionally much more expensive than many other paths. In practice,
this is enough for vulnerability detection.
Implementation Limitations. The dynamic symbolic execution
tool we employ requires source-code level instrumentation, so we
cannot support the analysis of compiled libraries. In our static anal-
ysis, we assume that the cost of a function from an external library
is constant. We cannot fully automate the test harness generation
for some classes, including nested classes, abstract classes, or classes
that directly extend classes in external libraries. Besides, our test
harness generation uses the symbolsolver in the JavaParser. Due to
its incomplete implementation, the return type of some expressions
cannot be determined.

9 RELATEDWORKS

Algorithmic Complexity Denial-of-Service. In 2003, Crosby
et al. found a new type of Denial-of-Service attack that exploits
the algorithmic complexity of programs [14]. Later, AC DoS is
found harmful in many application scenarios. Gal et al. noted that
mobile code systems could be vulnerable to AC DoS attacks [19].
Chang et al. proved the existence of AC vulnerabilities in real-world
networked applications [12]. Czubak and Szymanek exploited the
AC vulnerabilities to attack the firewall [15]. David proposed a
better zip bomb attack [18]. Pellegrino et al. measured the DoS
attacks on network services [32]. Altmeier et al.measured how DoS
attacks affect web services [4].
Algorithmic Complexity Measurement. The severity of pro-
gram performance has brought many works that measure the worst-
case performance of a program. Goldsmith et al. proposed a method
for measuring the empirical computational complexity [21]. Hol-
land et al. improved analysis capabilities by computing relevant
program behaviors [23]. Toffola et al. investigated how to expose
performance bottlenecks [39]. Specifically, many researchers focus
on analyzing the complexity of loops. Xie et al. classified several
types of loop structure to understand their complexity [44]. Song
and Lu proposed a static-dynamic hybrid analysis tool that provides
accurate performance diagnosis for loops [36]. Padhye and Sen pro-
posed a dynamic analysis technique for detecting data-structure

traversals [31]. Han et al. used the information extracted from per-
formance bug reports to generate test frames for guiding actual
performance test case generation [22].
DetectingACVulnerabilities in Java. Some previousworks have
studied the detection of AC vulnerabilities in Java. Burnim et al.
proposed WISE to find the worst-case complexity of Java programs
[10]. Holland et al. proposed a pragmatic engineering approach
using statically-informed dynamic (SID) analysis and two tools to
provide critical capabilities for detecting AC vulnerabilities [24].
Luckow et al. implemented a symbolic analysis framework [28];
they then proposed a search policy for analyzing the worst-case
path of Java programs [29]. Wei et al. transferred the worst-case
asymptotic complexity problem into optimal program synthesis
by looking for input pattern instead of concrete input [40]. Noller
proposed a hybrid approach that uses fuzzing and symbolic exe-
cution in tandem to discover vulnerabilities [30]. Awadhutkar et
al. presented a suite of tools that facilitates human-on-the-loop de-
tection of Algorithms Complexity vulnerabilities, which supports
analysis of Java source code and Java byte code [7]. Blair et al. used
micro-fuzzing to automatically discover AC vulnerabilities in Java
libraries [8].
General AC Vulnerabilities Detection. Khan and Traore pro-
posed a model based on a regression analysis that can prevent
algorithmic complexity attacks [25]. Chang et al. presented a static
analysis tool called SAFER for identifying DoS vulnerabilities and
the root causes of resource exhaustion attacks [12]. Petsios et al. im-
plemented a domain-independent framework for automatically find-
ing algorithmic complexity vulnerabilities using resource-usage-
guided evolutionary search techniques [33]. Tizpaz et al. produced
decision-tree discriminants that are useful for detecting timing
vulnerabilities [38]. Awadhutkar et al. investigated techniques to
amplify intelligence so that the analyst can gain a deeper knowledge
of complex loops that is necessary to discover AC vulnerabilities [6].
Lemieux et al. proposed a tool that can be used to generate inputs
that demonstrate algorithmic complexity vulnerabilities [26].

10 CONCLUSION

Algorithmic Complexity (AC)Denial-of-Service attacks can severely
degrade the availability of applications and their hosting servers.
In this paper, we present Acqirer, a hybrid analysis tool that au-
tomatically detects AC vulnerabilities in Java programs. It statically
locates potentially vulnerable structures in the target program, then
dynamically examines whether there exist two different execution
paths with a large cost difference. To improve the analysis efficiency,
it leverages a selective path exploration strategy guided by branch
policies. We thoroughly evaluated the effectiveness and efficiency
of Acqirer on two widely-used datasets and on real-world pop-
ular applications. We demonstrated that Acqirer significantly
outperformed the state-of-the-art detection tools, and can detect
unknown AC vulnerabilities effectively and efficiently.

ACKNOWLEDGMENT

The work described in this paper was partly supported by a grant
from CUHK (Project No.: 4055175) and a grant from the Research
Grants Council of the Hong Kong SAR, China (Project No.: CUHK
14210219).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yinxi Liu and Wei Meng

REFERENCES

[1] 2017. Tool for algorithmic complexity analysis based on symbolic execution.
https://github.com/isstac/spf-wca.

[2] 2018. Badger: complexity analysis with fuzzing and symbolic execution. https:
//github.com/isstac/badger.

[3] 2018. Pattern Fuzzing for Worst-Case Algorithmic Complexity. https://github.
com/MrVPlusOne/Singularity.

[4] Christian Altmeier, Christian Mainka, Juraj Somorovsky, and Jörg Schwenk. 2015.
Adidos–adaptive and intelligent fully-automatic detection of denial-of-service
weaknesses in web services. In Data Privacy Management, and Security Assurance.
Springer, 65–80.

[5] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.
Enhancing symbolic execution with veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE). Hyderabad, India.

[6] Payas Awadhutkar, Ganesh Ram Santhanam, Benjamin Holland, and Suresh
Kothari. 2017. Intelligence amplifying loop characterizations for detecting algo-
rithmic complexity vulnerabilities. In 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 249–258.

[7] Payas Awadhutkar, Ganesh Ram Santhanam, Benjamin Holland, and Suresh
Kothari. 2019. DISCOVER: Detecting Algorithmic Complexity Vulnerabilities.
In Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). Tallinn,
Estonia.

[8] William Blair, Andrea Mambretti, Sajjad Arshad, Michael Weissbacher, William
Robertson, Engin Kirda, and Manuel Egele. 2020. HotFuzz: Discovering Algo-
rithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing. In
Proceedings of the 2020 Annual Network and Distributed System Security Sympo-
sium (NDSS). San Diego, CA.

[9] Suhabe Bugrara and Dawson Engler. 2013. Redundant state detection for dy-
namic symbolic execution. In Proceedings of the 2013 USENIX Annual Technical
Conference (ATC). San Jose, CA.

[10] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated test
generation for worst-case complexity. In Proceedings of the 31st International
Conference on Software Engineering (ICSE). Vancouver, Canada, 463–473.

[11] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. 2008. EXE: Automatically generating inputs of death. ACM Transactions
on Information and System Security (TISSEC) 12, 2 (2008), 1–38.

[12] Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and
Vitaly Shmatikov. 2009. Inputs of coma: Static detection of denial-of-service
vulnerabilities. In 22nd IEEE Computer Security Foundations Symposium.

[13] Maria Christakis, Peter Müller, and Valentin Wüstholz. 2016. Guiding dynamic
symbolic execution toward unverified program executions. In Proceedings of the
38th International Conference on Software Engineering (ICSE). Austin, TX.

[14] Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks.. In Proceedings of the 12th USENIX Security Symposium
(Security). Washington, DC.

[15] Adam Czubak and Marcin Szymanek. 2017. Algorithmic complexity vulnerability
analysis of a stateful firewall. In Information Systems Architecture and Technology:
Proceedings of 37th International Conference on Information Systems Architecture
and Technology–ISAT 2016–Part II. Springer, 77–97.

[16] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The impact of regular expression denial of service (ReDoS) in practice: an empir-
ical study at the ecosystem scale. In Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). Lake Buena Vista, FL.

[17] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin. 2017.
Evil pickles: DoS attacks based on object-graph engineering. In 31st European
Conference on Object-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[18] David Fifield. 2019. A better zip bomb. In 13th USENIX Workshop on Offensive
Technologies (WOOT 19).

[19] Andreas Gal, Christian W Probst, and Michael Franz. 2005. Complexity-based
denial-of-service attacks on mobile code systems. INSTITUT FUR INFORMATIK
UND PRAKTISCHE MATHEMATIK (2005), 1–10.

[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). Chicago, IL.

[21] Simon F Goldsmith, Alex S Aiken, and Daniel S Wilkerson. 2007. Measuring
empirical computational complexity. In Proceedings of the 12th European Software
Engineering Conference (ESEC) / 15th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE). Dubrovnik, Croatia.

[22] Xue Han, Tingting Yu, and David Lo. 2018. PerfLearner: learning from bug
reports to understand and generate performance test frames. In Proceedings of
the 33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE). Montpellier, France, 17–28.

[23] Benjamin Holland, Payas Awadhutkar, Suresh Kothari, Ahmed Tamrawi, and Jon
Mathews. 2018. COMB: Computing relevant program behaviors.. In Proceedings

of the 40th International Conference on Software Engineering (ICSE). Gothenburg,
Sweden.

[24] Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh
Kothari. 2016. Statically-informed dynamic analysis tools to detect algorithmic
complexity vulnerabilities. In 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, 79–84.

[25] Suraiya Khan and Issa Traore. 2005. A prevention model for algorithmic com-
plexity attacks. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 160–173.

[26] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. Perf-
Fuzz: automatically generating pathological inputs. In Proceedings of the 27th
International Symposium on Software Testing and Analysis (ISSTA). Amsterdam,
Netherlands.

[27] Yinxi Liu, Mingxue Zhang, and Wei Meng. 2021. Revealer: Detecting and Exploit-
ing Regular Expression Denial-of-Service Vulnerabilities. In Proceedings of the
42nd IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA.

[28] Kasper Luckow, Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar, Malte
Isberner, Temesghen Kahsai, Zvonimir Rakamarić, and Vishwanath Raman. 2016.
JDart: A Dynamic Symbolic Analysis Framework. In Proceedings of the 22nd
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Eindhoven, The Netherlands.

[29] Kasper Luckow, Rody Kersten, and Corina Păsăreanu. 2017. Symbolic complexity
analysis using context-preserving histories. In 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 58–68.

[30] Yannic Noller, Rody Kersten, and Corina S. Păsăreanu. 2018. Badger: complex-
ity analysis with fuzzing and symbolic execution. In Proceedings of the 27th
International Symposium on Software Testing and Analysis (ISSTA). Amsterdam,
Netherlands.

[31] Rohan Padhye and Koushik Sen. 2017. Travioli: A dynamic analysis for detecting
data-structure traversals. In Proceedings of the 39th International Conference on
Software Engineering (ICSE). Buenos Aires, Argentina, 473–483.

[32] Giancarlo Pellegrino, Davide Balzarotti, Stefan Winter, and Neeraj Suri. 2015.
In the compression hornet’s nest: A security study of data compression in net-
work services. In Proceedings of the 24th USENIX Security Symposium (Security).
Washington, DC.

[33] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS). Dallas, TX.

[34] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing
engine for C. ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 263–272.

[35] Randy Smith, Cristian Estan, and Somesh Jha. 2006. Backtracking algorithmic
complexity attacks against a NIDS. In 2006 22nd Annual Computer Security Appli-
cations Conference (ACSAC’06). IEEE, 89–98.

[36] Linhai Song and Shan Lu. 2017. Performance diagnosis for inefficient loops. In
Proceedings of the 39th International Conference on Software Engineering (ICSE).
Buenos Aires, Argentina, 370–380.

[37] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the web: A study
of redos vulnerabilities in javascript-based web servers. In Proceedings of the 27th
USENIX Security Symposium (Security). Baltimore, MD.

[38] Saeid Tizpaz-Niari, Pavol Cerný, Bor-Yuh Evan Chang, Sriram Sankaranarayanan,
and Ashutosh Trivedi. 2017. Discriminating Traces with Time. In Proceedings
of the 23rd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Uppsala, Sweden.

[39] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2018. Synthesizing
programs that expose performance bottlenecks. In Proceedings of the 2018 In-
ternational Symposium on Code Generation and Optimization (CGO). Vienna,
Austria.

[40] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. 2018. Singularity:
pattern fuzzing for worst case complexity. In Proceedings of the 26th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). Lake Buena Vista, FL.

[41] Nicky Williams, Bruno Marre, and Patricia Mouy. 2004. On-the-fly generation of
k-path tests for C functions. In Proceedings of the 19th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Linz, Austria.

[42] NickyWilliams, BrunoMarre, PatriciaMouy, andMuriel Roger. 2005. Pathcrawler:
Automatic generation of path tests by combining static and dynamic analysis. In
European Dependable Computing Conference. Springer, 281–292.

[43] Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. 359–368.

[44] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. 2016. Proteus: com-
puting disjunctive loop summary via path dependency analysis. In Proceedings of
the 24th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE). Seattle, WA.

[45] Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. 2015.
Regular property guided dynamic symbolic execution. In Proceedings of the 37th
International Conference on Software Engineering (ICSE). Florence, Italy.

https://github.com/isstac/spf-wca
https://github.com/isstac/badger
https://github.com/isstac/badger
https://github.com/MrVPlusOne/Singularity
https://github.com/MrVPlusOne/Singularity

	Abstract
	1 Introduction
	2 Background
	2.1 AC Vulnerabilities
	2.2 Detection of AC Vulnerabilities

	3 Problem Statement
	3.1 Threat Model
	3.2 Research Goals and Challenges
	3.3 Definitions

	4 Code Pattern for Cost Difference
	4.1 Preliminaries
	4.2 Vulnerable Conditional Patterns

	5 Acquirer
	5.1 Branch Policy Generation
	5.2 Selective Dynamic Symbolic Execution
	5.3 Test Harness Generation
	5.4 Non-Vulnerable Code Block Filtering

	6 Implementation
	6.1 Calling Context Construction
	6.2 Code Instrumentation
	6.3 Dynamic Symbolic Execution

	7 Evaluation
	7.1 Datasets and Setup
	7.2 Benchmark Analysis
	7.3 Automatic Vulnerability Detection
	7.4 Characterization of Vulnerabilities
	7.5 Component-wise Analysis
	7.6 Detecting Real-World Vulnerabilities

	8 Limitations
	9 Related Works
	10 Conclusion
	References

