DSFuzz: Detecting Deep State Bugs with Dependent State
Exploration

Yinxi Liu
The Chinese University of Hong Kong
Hong Kong SAR, China
yxliu@cse.cuhk.edu.hk

ABSTRACT

Traditional random mutation-based fuzzers are ineffective at reach-
ing deep program states that require specific input values. Con-
sequently, a large number of deep bugs remain undiscovered. To
enhance the effectiveness of input mutation, previous research has
utilized taint analysis to identify control-dependent critical bytes
and only mutates those bytes. However, existing works do not con-
sider indirect control dependencies, in which the critical bytes for
taking one branch can only be set in a basic block that is control
dependent on a series of other basic blocks. These critical bytes can-
not be identified unless that series of basic blocks are visited in the
execution path. Existing approaches would take an unacceptably
long time and computation resources to attempt multiple paths
before setting these critical bytes. In other words, the search space
for identifying the critical bytes cannot be effectively explored by
the current mutation strategies.

In this paper, we aim to explore a new input generation strategy
for satisfying a series of indirect control dependencies that can
lead to deep program states. We present DSFuzz, a directed fuzzing
scheme that effectively constructs inputs for exploring particular
deep states. DSFuzz focuses on the deep targets reachable by only
satisfying a set of indirect control dependencies. By analyzing the
conditions that a deep state indirectly depends on, it can generate
dependent critical bytes for taking the corresponding branches.
It also rules out the control flows that are unlikely to lead to the
target state. As a result, it only needs to mutate under a limited
search space. DSFuzz significantly outperformed state-of-the-art
directed greybox fuzzers in detecting bugs in deep program states:
it detected eight new bugs that other tools failed to find.

CCS CONCEPTS

« Security and privacy Software security engineering.

KEYWORDS

Fuzzing; Program analysis; Software testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3616594

Wei Meng
The Chinese University of Hong Kong
Hong Kong SAR, China
wei@cse.cuhk.edu.hk

ACM Reference Format:

Yinxi Liu and Wei Meng. 2023. DSFuzz: Detecting Deep State Bugs with
Dependent State Exploration. In Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS °23), November
26-30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3576915.3616594

1 INTRODUCTION

Mutation-based fuzzers have been widely adopted in bug detec-
tion [16]. People have found that many program states are easy to
reach, but some deep states are only accessible through a specific
sequence of prior states in the right order. The bugs that only man-
ifest themselves in the deep states are thus difficult to be detected.
For instance, network protocols typically have complex internal
states, some of which are only reached after receiving several spe-
cific types of messages; Rogue-like games move forward only when
certain sequences of user inputs are provided. Similarly, data pro-
cessing programs often contain hard-to-reach deep states. They
would typically transit among multiple states (or processing units)
depending on the already processed data bytes.

To visit the prior dependent states and the deep state in order, the
program inputs must meet very complex and specific constraints.
These constraints are hard to satisfy by fuzzers, as a deep state’s
conditional statement can be directly reached via a preferred path,
e.g., a short path, without having to reach its previous dependent
states.

The libpng library is such an example. A simplified view is
presented in Listing 1: it iteratively processes PNG image data
chunks using multiple processing units in a for loop.

il for (5;) {

2 PNG_CONST png_bytep chunk_name = png_ptr->chunk_name;
3 if (!png_memcmp (chunk_name, png IHDR, 4))

4 png_ptr->mode |= HAVE_IHDR; // IHDR

5 if (!png_memcmp(chunk_name, png PLTE, 4))

6 png_ptr->mode |= HAVE PLTE; // PLTE

7 if (!png_memcmp(chunk_name, png IDAT, 4)) {

8 if (!(png_ptr->mode & HAVE_IHDR))

9 png_error (png_ptr,)8
10 if (!(png_ptr->mode & HAVE PLTE))

11 png_error (png_ptr,)8
12 png_ptr->mode |= HAVE IDAT; // IDAT

13 ... // Bug location

14 }

15 .

16 }

Listing 1: A simplified example showing indirect control dependency
across different iterations.

The code to process a chunk in type IDAT (lines-12-13) is only
executed if the chunk follows IHDR chunks and PLTE chunks. In
other words, the program must have reached the IHDR and PLTE
states corresponding to lines 4 and 6 before it can reach line 12 and

https://doi.org/10.1145/3576915.3616594
https://doi.org/10.1145/3576915.3616594

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

trigger the bug in line 13. One feasible bug-triggering path is L3-4-
>L5-6->L7->L8->L10->L12-13, which involves at least three loop
iterations. The bug in state IDAT exhibits not only direct control
dependency on L7, L8 and L10, but also indirect control dependency
on state THDR (L3) and state PLTE (L5). The fuzzers must address
both types of control dependencies in the path constraint to reach
the deep state and trigger the bugs there.

Existing fuzzers can discover and solve the direct control depen-
dencies [31], but it still remains challenging to satisfy the indirect
control dependencies for the deep-state bugs. Coverage-guided
fuzzers can easily generate several inputs that separately satisfy
the conditions in line 3, 5 and 7, but can hardly generate one input
that satisfies all three in a specific order. Directed fuzzers are none
the wiser. Even by setting line 13 as the target, they would usually
prefer the shortest path that reaches state IDAT, rather than a longer
path that first reaches IHDR and PLTE, and then enters IDAT via at
least three loop iterations [10, 34].

One approach to solving the complex path constraints is perform-
ing dynamic taint analysis to identify the constraints’ dependent
input bytes and mutate them [8, 12, 18, 19, 26, 28, 38, 42]. However,
using taint analysis alone cannot adequately address the issue of
indirect control dependencies and order state transitions for three
reasons. First, the dependent input bytes for indirect control depen-
dencies might not be efficiently discovered. Dynamic taint analysis
covers mostly the executed code. The indirect control dependent
code for the deep targets might not be visited by the fuzzers, e.g.,
they are on paths far away from the targets. In such cases, taint
analysis would fail as it cannot deduce all the critical dependent
input bytes for satisfying these constraints.

Second, it is challenging to precisely infer the control dependent
input bytes for each conditional statement on the path. For instance,
alocal variable (e.g., chunk_name in Listing 1) could take values from
different data chucks (that are located at different positions in the
input) and be used in multiple conditional statements (e.g., L3, L5
and L7) on one path. For such cases, existing approaches either fail
to distinguish these different data chunks [12, 38, 42], or need to
mutate all the possible value combinations of these data chunks
[8, 17, 19, 26-28, 46].

Third, the dependencies need to be satisfied by mutating differ-
ent critical input bytes in the correct order. The existing fuzzers are
unaware of the correct order of state transitions for reaching the
deep location. As a result, they must examine numerous combina-
tions of conditional branches to uncover the correct execution path,
which could be time-consuming and sometimes infeasible under
limited resources. This problem gets magnified for programs that
process long inputs consisting of a large number of influencing data
chunks. While only a few combinations of these data chunks can
reach the deep state, existing approaches can only try all possible
combinations one by one without inferring the expected order. Be-
sides, there may be a large number of indirect control dependencies
that need to be satisfied for deep states to be reached in the real
world (Listing 4). Consequently, existing approaches are unable to
efficiently reach the deep states.

In this paper, we aim to solve the challenges in detecting real-
world bugs hidden in deep states reachable by only satisfying their
indirect control dependencies. We observe that reaching such a deep
state requires first reaching the prior dependent states in the correct

Yinxi Liu and Wei Meng

order, which is hard for conventional fuzzers. We propose DSFuzz,
a directed fuzzer that smartly explores the dependent program
states to reach deep states and detect new bugs. It is equipped with
two new techniques that we developed —a static state dependency
analyzer and a progressive micro directed fuzzing scheme.

Specifically, we first identify dependent state transitions and
build a state dependency graph (SDG), then identify deep states and
set them as targets. We build SDG by first constructing the edges rep-
resenting direct control dependencies from a def-use analysis, then
storing the data flow information from a static inter-procedural data
flow analysis, and finally identifying indirect control dependencies
using the data flow information. For each state on the graph, we
determine whether it is deep by computing the chance of satisfying
all its indirect control dependencies.

We then start directed fuzzing toward these deep targets gradu-
ally. The fuzzer must follow the required state transitions on the
SDG to reach the target deep state. The task can be divided into
multiple phases, where in each phase DSFuzz solves a micro directed
fuzzing task. In each phase DSFuzz progressively approaches the
target state by making one transition from the currently reached
state to the next dependent state on the state transition path. To
make a state transition, it sets the next dependent state as the target
and then performs micro directed fuzzing. In order to efficiently
arrive at the previously reached states, it identifies their dependent
input bytes and preserves their values. This is achieved by con-
ducting a taint analysis on the conditions that enable each state
transition, followed by analyzing the input ranges that influence
the value of these conditions. By only conducting taint analysis on
the conditional statements of dependent state transitions, DSFuzz
avoids wasting energy on running taint analysis that cannot deduce
dependent input bytes. It then mutates only the input bytes influenc-
ing the current state transition to solve the micro directed fuzzing
task. Such a divide-and-conquer strategy allows DSFuzz to solve
the challenge of satisfying complex indirect control dependencies.

We extensively evaluated DSFuzz with two widely used datasets—
Fuzzbench [33] and Magma [21]. DSFuzz significantly outperformed
two state-of-the-art directed greybox fuzzers—AFLGo [10] and
ParmeSan [34]—in a variety of programs. It detected all bugs that
can be detected by the two fuzzers combined, and was the most
efficient tool for almost all bugs. It outperforms the two fuzzers in
detecting not only the deep state bugs we identified, but also non
deep state bugs in Magma. This is because our solution limits the
fuzzer’s search space by only targeting the dependent state transi-
tions. It also detected eight previously unknown bugs that other
tools failed to detect from 47 potentially buggy deep locations we
identified, including an almost two-decade-old one. We responsibly
disclosed the newly detected bugs to the relevant developers. With
a component-wise evaluation, we demonstrate that our state depen-
dency analysis and progressive micro directed fuzzing technique
are both needed for detecting deep state bugs.

We made the following contributions.

e We uncover that deep program states having indirect control
dependencies exist widely but are difficult to reach with
state-of-the-art techniques.

e We propose to satisfy indirect control dependencies by iden-
tifying the implicitly required dependent states and reaching
them progressively.

DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

e We integrate the above analyses into DSFuzz, a directed
fuzzing scheme for efficiently reaching deep states.

e We demonstrate the capabilities of DSFuzz—it outperformed
two state-of-the-art tools in two widely used benchmarks,
and detected eight new bugs that other tools failed to find.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, we discuss existing approaches and their limitations
(§2.1), and define our research problem, goal, and scope (§2.2).

2.1 Existing Approaches

Researchers have proposed various methods to reach deep states
and detect deep bugs, but no existing approaches are specialized in
satisfying indirect control dependencies.

Directed Fuzzing. A straightforward solution is to set the deep
state locations as the targets and apply directed fuzzing [10, 34].
As discussed above, however, state-of-the-art directed fuzzers are
discouraged from generating the necessary dependent data block-
s/bytes that help reach prior dependent states (e.g., THDR and PLTE)
because such inputs could be more distant from the targets com-
pared to other states (e.g., IDAT).

Structured Input Generation. People also try to generate struc-
tured inputs to pass the complex validity checks that block mutation-
based fuzzers from further testing. For instance, the data block of
IHDR might require a different length than the data block PLTE; one
cannot simply mutate one to another by changing the chunk name
bytes. Existing work mitigates this problem by modeling the input
format [9, 37] or the range of data chunks [18]. However, these
approaches can only ensure the generated data blocks are valid.
The data blocks are not ordered in a way that could lead to a series
of state transitions toward the deep states.

Critical Byte Mutation. Researchers have tried to solve the com-
plex constraints to reach the deep states. A common solution is to
identify the critical bytes that affect the control flow and further
mutate these bytes [8, 12, 38]. However, this approach cannot ef-
ficiently discover the dependent input bytes for indirect control
dependencies. The analysis can only cover executed code, while
the indirect control dependent code for the deep state targets might
not be visited. More complex solutions either only support minimal
environment/instruction sets [14, 23, 35] or need to use symbolic
execution [36, 38, 41, 44]. There is already evidence to suggest that
setting up and maintaining a symbolic environment is not worth

the effort [5].

Control Dependent State Identification. Researchers have
found that the deep states must be reached via certain dependent
states. Some works identify representative inputs that reach these
dependent states to provide the necessary execution context for
reaching deep states [8, 17, 26, 27]. However, such approaches do
not consider the different occurrence sequences of these dependent
states, and therefore cannot handle loops over them.

Some works propose to record all the occurrence sequences of
the dependent state [19, 28, 46]. They would typically consider
the variable chunk_name as the key variable and mutate different
occurrence sequences of its value. Such a strategy would bring
a large search space as most of the sequences do not trigger the

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

set the value of ¢ c=false

code blocks A
| code blocks A l:l

set the value of ¢ no change

e

‘ code block b

Figure 2: Indirect Dependency

code block b ‘

Figure 1: Direct Dependency

bug. Mutating over all possible sequences is time-consuming and
sometimes infeasible under the limited fuzzing resources. Currently,
no existing solution is aware of the correct order of dependent state
transitions for reaching the deep location.

2.2 Problem Statement

This paper aims to develop a new fuzzing technique to detect bugs
in deep program states. Each branch (and the corresponding ba-
sic block) in a program is directly control dependent on its corre-
sponding branching condition. The condition must be true for the
program to execute that branch and reach the corresponding state.
Variables used in that condition are referred to as key variables. The
same branch (basic block) can be executed in different paths, each
of its occurrences uniquely describes a program state that enables
the transition to another state.

We abstract the process of satisfying condition ¢ of block b into
two steps. First, the program executes a set of code blocks A that
set the value of the variables used in c. Second, the value of c is
evaluated to determine whether the code block b will be executed.
It is generally the case that the same set of conditions influence
the control flow of code blocks in A and condition ¢ (Figure 1).
Code block b is directly control dependent on condition c, as all
execution paths that reach condition ¢ can reach the code blocks in
A. However, A and ¢ could exist in two different branches such that
they may not be reached at the same time (Figure 2). Likewise, code
blocks in A could be control dependent on another condition ¢’,
where a path that reaches condition ¢ does not necessarily satisfy
¢’. Code block b is indirectly control dependent on condition ¢’, as
reaching code block b must first satisfy ¢’ before c.

This paper examines indirect control dependency among pro-
gram states, where one state’s control flow is indirectly influenced
by the values set in prior states. Reaching such a state requires
first reaching the prior dependent states. For example, the iter-
ation reaching the bug location in IDAT requires prior iterations
that reach IHDR and PLTE. We point out that it is challenging for
state-of-the-art fuzzers to satisfy such dependencies, as they do not
intentionally differentiate the dependent prior states from the other
possible states along exploration.

We consider a program state deep if it is only accessible through
a specific series of indirect control dependencies, because the tra-
ditional directed fuzzers are good at satisfying the direct control
dependencies. They are unlikely to reach a deep state when there
are many hard-to-satisfy indirect control dependencies, as the ma-
jority of their fuzzing energy would be wasted on mutations that do
not satisfy these dependencies. As a result, guiding the program to
reach a deep state is challenging without identifying and satisfying
all the prior states it needs to transit through first.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

We define the deep state as a state where the chance P of passing
all indirect control dependencies is lower than aboundary k, i.e., P <
k. Even though there are other definitions of deep states, the ones
we focus on are both prevalent and previously ignored. Programs
that contain lots of indirect control dependencies would benefit the
most from our technique. For example, applications that process
streaming data blocks typically follow different control flows based
on the content of the already processed blocks, creating a chain of
dependent data block processing states. Besides, applications with
a large number of user-specified settings contain many dependent
states. Effectively exploring these states is challenging, especially
when the number of options for each setting is large.

We aim to explore previously hard-to-reach deep bugs by iden-
tifying not only direct but also indirect control dependencies be-
tween program states. We also aim to develop an efficient method
to search for satisfying inputs for these deep bugs. Our solution is
not intended as a replacement for existing general fuzzers, but as a
complement. For instance, users can use our static analysis to check
whether their target programs and code locations contain many
indirect control dependencies. Another tool can then be used if
the target programs and code locations do not contain any indirect
control dependencies.

3 DESIGN

We first give an overview of our solution using the same motivating
example (§3.1), then present the detailed component-wise design of
DSFuzz following the workflow in Figure 3. DSFuzz builds the state
dependency graph of a program and analyzes the indirect control
dependencies in the graph to identify the target deep states (§3.2).
Based on this information, we can perform directed fuzzing on
these targets (§3.3). We explore the possible state transition paths
to approach the targets (§3.4), and employ a micro directed fuzzing
campaign for transiting to each individual dependent state on the
paths (§3.5).

3.1 Overview

We design DSFuzz to explore deep program states efficiently. Tran-
sitions to these states are control dependent on some critical vari-
ables set in prior states. We have shown in the motivating example
(Listing 1) that the exact state transition (i.e, IHDR, PLTE, IDAT)
is critical to uncover the bug, and such transitions involve some
indirect control dependencies. In particular, png_ptr->mode must
first be set at line 4 and 6 for passing the checks in line 8 and 10. This
indicates that state IHDR and state PLET could be the prior states
of state IDAT, as the transition to state IDAT is dependent on the
critical variable png_ptr->mode set in state THDR and state PLET.

DSFuzz can automatically identify such state transitions and
build a state dependency graph (SDG). It first conducts def-use anal-
ysis to construct the initial SDG, and incrementally adds indirect
call edges with dynamic taint analysis. Based on the SDG, DSFuzz
can identify deep states and set them as targets (e.g., the target in
line 13). Such deep states are indirectly control dependent on some
prior states: their control flows (e.g., line 8 and 10) are influenced
by values set in prior states (e.g., line 4 and 6).

DSFuzz then performs directed fuzzing to efficiently explore a
(short) transition path on the SDG to reach the deep states. It would

Yinxi Liu and Wei Meng

first identify a sequence of dependent states for reaching a deep
state. For example, to reach line 13, it identifies two dependent
states THDR and PLET that are in line 4 and 6, respectively. It then
performs micro directed fuzzing to gradually make a sequence of
transitions to reach these dependent states and the final target
state, e.g., transitions from the entry state to IHDR and PLET, and
then to the target state IDAT. In each micro directed fuzzing task,
DSFuzz tries to make a state transition from the current state S
to the next state T. To identify and mutate the dependent input
bytes for making the state transition, DSFuzz first runs dynamic
taint analysis to obtain all the input bytes that have data flow to the
dependent condition of state T. It then eliminates the input bytes
that affect state S and precisely locates the ones that only affect
state T.

3.2 State Dependency Analysis

DSFuzz builds a state dependency graph (SDG) to analyze the con-
ditions of transitions among the states and find the deep states that
have indirect control dependencies on other prior states. These
deep states and their dependent prior states are set as the targets of
our directed fuzzer, which we will describe in more detail in §3.3.
We first present how we construct an SDG (§3.2.1), then show how
we identify deep states based on its indirect control dependencies

(§3.2.2).

3.2.1 State Dependency Graph Constrution. An SDG consists of
nodes representing basic blocks and their corresponding states,
and two types of directed edges between nodes representing ei-
ther direct or indirect control dependencies between the states. We
use solid directed edges to represent direct control dependencies
and dashed directed edges to represent indirect control dependen-
cies. Use Figure 4 as an example: node %163 Bug Loc is directly
control dependent (as represented by a solid directed edge) on
%71 png_ptr-> mode, which is indirectly control dependency (as
represented by a dashed directed edge) on Store %71. We also use
undirected edges to link nodes whose representing basic blocks are
adjacent in the program’s bitcode, e.g., Store %71 is located right
after %105 IHDR in the bitcode.

As the first step of constructing an SDG, we leverage existing
def-use analysis to construct the edges representing direct control
dependencies and store the data flow information. This information
will later be used for analyzing the indirect control dependencies.
Algorithm 1 describes the steps we take for analyzing direct/indirect
control dependencies and building the SDG.

Direct Control Dependency. We collect direct control dependen-
cies from a def-use analysis and collect data flow information from
a static inter-procedural data flow analysis. We dynamically update
the SDG by adding the indirect call sites (§4.1). We use two data
structures to store the data flow information of an SDG: one at the
variable level and the other at the block level. The variable level one
is DFI—a map that stores pairs of definition and write dependencies
between LLVM Values (i.e., the base class of all values computed in
the bitcode). The block level one is SDGj,—another map that stores
all the variable level data flow information corresponding to a basic
block b. We differentiate different states of the same block by their
execution context, i.e., the blocks that have already been executed.

DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

User Specified
Targets /
_ﬁz% Dependent
- States
State Dependency
Graph Deep Target:
TARGET ACQUISITION

—

STATE TRANSITION MANAGEMENT

/,4'{ Range of Mutation ‘

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

‘ Target Branch

value Axplo tion——

MICRO DIRECTED FUZZING

Figure 3: An architecture overview of DSFuzz.

%105 IHDR || Store %71 |
1
1

T
%163 Bug Loc
v

1
%157 IDAT H %71 png_ptr->mode ‘ ‘ Yoerror ‘

%70 chunk_name

Figure 4: An Example of Identifying Indirect Control Dependency.

Algorithm 1 State Dependency Graph builder.

Input: function: The entry function of the analysis.
Output: SDGy: Basic block level SDG, DFI: Data flow information.
1. Initialize DFT « {}
2 for all block € collectBasicBlocks(function) do
3. Initialize SDGpjock < {}
for all instruction € collectInstructions(block) do
if isDefInst(instruction) then
Initialize DFIgetVal(instruction) — {}
end if
if isGenlInst (instruction) then
insert getSource(instruction) into DFlgetRes(instruction)
end if
if isCall(instruction) then
argDep < SDGBuilder(getCallee(instruction), SDGp, DFI)
updateDataDep(argDep, DFI)
end if
for all u € getUses(instruction) do
insert DFlyetpef(DFIu) into SDGplock
end for
end for
. end for
20: for all v € getVariables(SDG) do
for all w € getDependentConditionals(SDG, v) do
if w is reachable without v then
Update w indirectly dependent on v
else
Update w directly dependent on v
end if
27: end for
28: end for

4:
5;
6:
7:
8:
9:

10:

We perform static data flow analysis on all instructions in the
order of program execution. The analysis operates differently de-
pending on the type of each instruction. If the instruction is a
definition, we initialize a corresponding set of uses in DFI (line 6).
If the instruction is a generative one that creates a new LLVM value
(§4.2), we record the direct control dependency between the instruc-
tion source and the result (line 9). In the case of a call instruction,
we invoke a subprocess running Algorithm 1 for its target function,
which would perform a similar static data flow analysis and provide
information about the dependencies between function arguments
(line 12). We can then store the argument dependencies into DFI
(line 13). After that, we can connect data flow information with
SDG nodes (line 16). To represent all data flows to a node, we store
the DFI of the definitions of all uses in the instructions contained

within the node. The stored data flow information will be later used
to build the edge information in SDG (line 25).

Indirect Control Dependency. We analyze the SDG data flow
information to identify indirect control dependencies. According to
our definition in §2.2, a target state is indirectly control-dependent
on another under two criteria. First, the indirectly control-dependent
state sets the value of a variable, which is later used in a conditional
for transiting into the target state. Second, a path reaching the
target state does not necessarily reach the dependent state first;
otherwise, they are direct control dependent.

To efficiently locate potential dependent states, we first search
for the patterns where a data write operation flows to a control
block. We iterate over the write statements in SDG (line 20), and
extract the target control blocks in data flows (line 21). Nonetheless,
the write statement does not necessarily enables a path to the
target. The value set by the write statement could, for instance,
prevent the control block from taking the branch to the target.
We implement a more precise data flow analysis (§4.2) to rule out
certain situations where the write statement cannot satisfy the
expected branch condition.

After locating the data flow pattern, we check if the destina-
tion control block w is reachable via a path that does not visit the
variable write statement v (line 22). Figure 4 gives an example of
how we analyze the bitcode in Listing 2 to find the indirect control
dependency between %105 IHDR and %163 Bug Loc.

1 // %70: chunk_name, %71: png_ptr->mode

2 %102 = tail call i32 @bemp(i8+ %70, i8+ %IHDR)
3 br label %104

4 %104 = icmp eq i32 %102, 0

5 br il %104, label %105, label %109

6 IHDR

7 %106 = load i64, i64x %71

8 %107 = or i64 %106, HAVE_IHDR

9 store i64 %107, i64+ %71 // Store into %71

10 ...

11 %154 = tail call i32 @bemp(i8+« %70, i8+ %IDAT)
12 br label %156

13 %156 = icmp eq i32 %154, 0

14 br i1 %156, label %157, label %exit

15 // IDAT

16 %158 = load i64, i64x %71 Load from %71

17 %159 = and i64 %158, HAVE_IHDR

18 %160 = icmp eq i64 %159, 0

19 br i1 %160, label %png_error, label %163

20 ..

Listing 2: A simplified example of indirect control dependency.

By identifying the variable write statement with Store, we can
get %71 png_ptr->mode, which flows to the control block %160 in
line 19. Since the Store instruction is under the control block
%105 IHDR, and %163 Bug Loc depends on the control block %160,
there exists a path from %105 IHDRto %163 Bug Loc that does not in-
clude the write statement. Besides, %105 IHDR and %163 Bug Loc are

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Yinxi Liu and Wei Meng

control dependent on the same conditional that evaluates %70 chunk_name, Algorithm 2 DSFuzz’s fuzzing loop.

which is executed once in each loop iteration. Getting to %163 Bug Loc

requires a prior iteration that gets to %105 IHDR.

3.2.2 Deep States and Deep Targets. We determine whether a given
target state b is deep based on the chance of satisfying all its indirect
control dependencies (§2.2). We use ¢; € C to denote all the indirect
control dependencies between b and its dependent conditions. The
probability that a dependent condition ¢; is satisfied is p;, which
is approximated as the number of satisfying branches n! divided

by the number of all possible branches n', i.e., p; = Z—% We discuss
the implementation details for calculating n’ in §4.1. The chance of
satisfying all indirect control dependencies is further calculated by
multiplying the chances of satisfying individual ones, i.e, P = [] p;.

Our computation uses two approximations. Firstly, we assume
each branch has the same chance of being satisfied on average; and
secondly, we assume the satisfactions of individual dependencies
are independent. While these assumptions may not always hold
in practice, this simple metric is already helpful in estimating the
difficulty of satisfying indirect control dependencies. A better com-
putation could potentially lead to a more precise estimation, which
we leave as future work.

We further refine the target locations by using the sanitizer-
instrumented code locations inside the deep states we identify.
Those locations are already marked as potentially buggy by the
sanitizer, making it easier for the fuzzer to find potential bugs.

For example, Bug Loc is marked as potentially buggy by a san-
itizer and has indirect control dependencies on IHDR and PLTE.
Suppose the conditional for reaching IHDR and PLTE contains N
branches, the chance of meeting both dependencies is P = # Asit
turns out, N = 49, which suggests that 99.96% of the fuzzing trials
would not reach the target. Therefore, state Bug Loc is considered
a deep target.

3.3 Fuzzing Loop

After collecting the deep states, DSFuzz tries to reach them through
directed fuzzing. The fuzzing loop of DSFuzz is different from a
traditional directed fuzzer, in that it progressively reaches a target
by reaching each of its prior dependent states.

In particular, DSFuzz divides the task into multiple phases, and
solves a micro directed fuzzing task in each phase. It progressively
approaches the target state by making one transition from the
currently reached state to the next dependent state on the state
transition path (§3.4). To make a state transition, it sets the next
dependent state as the target and then performs micro directed
fuzzing. The micro directed fuzzing operates similarly to a tradi-
tional direct fuzzer. It mutates specific input bytes to satisfy a series
of path constraints to reach a given code location (§3.5).

Algorithm 2 illustrates the entire process. The algorithm accepts
as input a set of input seeds I, a set of targets T, two versions of
target programs (including one instrumented version program; for
taint tracking and one without programy; for efficiency), and a
metric d for computing the distance from a branch condition to
a target. The metric d is similar to but different from the one in
ParmeSan [34]. While ParmeSan calculates distances between con-
ditionals, DSFuzz calculates distances between SDG states. Using

Input: I: seed inputs, T: the set of target conditions (optional), program;: program
with taint instrumentation, program,,;: program without taint instrumentation,
d: distance metric.
Output: Ix: crashing inputs.
1 conds « initializeSeed(programy,I) // Unexplored branch conditions and
the corresponding input that uncovered that condition.
2 for all target € T do
3 S« satisfylndirect(target) // Dependent states required by the target.
4 while p « getNextPath(S) is valid do
5: range « initializeRange(p) // No further mutations are made to these
ranges of bytes.
6 queue « initializeQueue(p,d) // This priority queue stores data for
conditions, with each item containing three fields: condition, distance, and
serial number.

7: Sort queue by distance and serial number.
8: while queue # ® do
9 ¢ «— pop(queue)

// Micro directed fuzzing:
10: i « inputSelect(conds,c)
11: while c is still unexplored and !timeout do

12: i’ « satisfyDirect(c, i, range)

13 if programp, (i’) crashes then

14: insert(i’,Ix)

15: end if

16: if isInteresting(i’) then

17: path’ «— program, (i)

18: for all unexplored branch ¢’ on path’ do
19: conds[c'] « 1

20: end for

21: end if

22: if ¢ was explored then

23: conds « conds — {c}

24: range «— getRange(c,i’)

25: end if

26: end while

27: if timeout then

28: break // Failed due to timeout. Please try another path.
29: else

30: pass // Successfully reached one state, proceed to the next.
31: end if

32: end while

33: if queue == ® then

34: break // Successfully found a path to the target
35: end if

3: end while

37: end for

d would result in a lower distance for the deep states compared to
the metric in ParmeSan. Such a lower distance would encourage
DSFuzz to reach the deep states rather than the shadow states. The
state transition management phase accepts target locations with
their indirect control dependencies. Analyzing indirect control de-
pendencies produces a series of dependent states for exploration
(line 3). In order to reach the target location, it progressively ex-
plores a potentially feasible transition path through these depen-
dent states (line 4). As an initial step in exploring each candidate
transition path, DSFuzz identifies the dependent input bytes of
the previously reached states in the path and avoids further muta-
tion of those bytes (line 5). It then produces a priority queue that
contains information about the conditions that must be satisfied
(line 6). Each item in the priority queue is a tuple that contains
three elements, namely the branch condition to flip for reaching a
dependent state, the distance information calculated from the state
dependency graph, and a serial number based on the number of
times the corresponding dependent state appears in the candidate
path. The serial number is set to one when the corresponding state
occurs only once on the candidate transition path. It is increased
by one for each new occurrence of the state. The items are ordered

DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

dependent state analysis
)

obtain Visited input range
prefix /| Prefix |\ identification
[1
Range of
Mutation

Determinable || Path
States Skeleton
Dependent

- | Candidate
States Recurring States %tranisili on p At Path

exploration —
——

Undeterminable | 7 — micro directed
States failed with timeout / no variable changel fuzzing
path pruning

success

Figure 5: The Procedural Diagram of State Transition Management.

by 1) the state distance (line 7), 2) the position of the condition on
the path, and 3) the serial number. DSFuzz pops the next condition
from the priority queue to satisfy it and make a transition to the
next state (line 9). To satisfy the condition, DSFuzz starts a micro-
fuzzing campaign (line 10-26). It first runs input prioritization to
determine the input to mutate from (line 10). When the condition is
unexplored, DSFuzz mutates input bytes to satisfy it (line 12). The
goal of mutation is to solve the constraints posed by the unexplored
branches. DSFuzz flips existing bytes into the desired value that
solves these constraints. After satisfying the constraints, DSFuzz
tries to trigger bugs and collect crashes (lines 13-14). It stores all
crushing inputs into Ix, which is later produced as the output. When
a new branch is explored, it would also add new inputs to the seed
set (lines 17-20). As a last step, DSFuzz removes newly explored
branches from the unexplored branch set, and updates the input
ranges that do not require further mutations (lines 23-24).

When a micro-fuzzing campaign succeeds within a timeout limit
(line 22), DSFuzz moves to the next state (line 30) or report success
when there is no remaining state in the queue to explore (line 34).
When it fails due to timeout (line 28), DSFuzz breaks the current
path exploration campaign and selects a new path to explore.

3.4 State Transition Management

In this subsection, we explore the necessary state transition paths.
These paths allow the fuzzer to drive the program to transit through
the correct sequence of dependent states and progressively ap-
proach the target state. Figure 5 presents the detailed procedure.

As the first step, DSFuzz identifies the necessary dependent
states of each target through dependent state analysis (§3.4.1). These
dependent states can be connected via transitions to form poten-
tially feasible transition paths to the target. However, due to the
limitation of the static inter-procedural analysis, we cannot pre-
determine the number of occurrences of these dependent states or
their order. Therefore, given the same set of dependent states, there
could exist a huge number of possible transition paths, e.g., some
states need to be visited multiple times.

We overcome this huge complexity with three strategies (§3.4.2).
First, we perform transition path exploration using a breadth-first
search approach with a preference for shorter paths. Second, after
exhausting all shorter paths, if we need to explore a longer path
consisting of [states, we retrieve its visited prefix to reuse the
known inputs and efficiently reach the initial [— 1 visited states.
Third, we conduct path pruning if DSFuzz fails to explore any of its
containing states within a timeout. Paths with pruned prefixes will
not be explored, resulting in a significant reduction of the search
space in many cases.

DSFuzz proceeds with each candidate transition path by making
a transition to the next state through micro directed fuzzing. Before

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

each micro directed fuzzing campaign, DSFuzz utilizes precise dy-
namic taint tracking to examine the input ranges of the dependent
states already visited, and employs these ranges to direct subse-
quent mutations (§3.4.3). DSFuzz finally mutates the corresponding
input bytes used in the control code blocks of the next state to
effectuate the transition.

3.4.1 Dependent State Analysis. We aim to efficiently build a po-
tentially feasible transition path by analyzing how candidate de-
pendent states (obtained by §3.2) can be connected. We analyze
whether a state should be included on the path, whether a state
should be repetitively visited, and whether different state visiting
orders result in different execution contexts.

Determinable States. DSFuzz first focuses on states where it is
possible to determine the order in which they are visited. It com-
putes the order based on the position of their parent conditionals in
the program’s control flow graph. States that do not affect the tar-
get or any of its predecessor states are considered irrelevant states.
They should not occur in the transition path and waste DSFuzz’s
energy on exploring them. The input bytes of irrelevant states are
removed to save the analysis time and reduce interference. DSFuzz
would also randomly determine the order for dependent states
whose order does not affect the value of key variables. This is the
case when the states modify different key variables, or when each
state increases or decreases the key variable by a fixed amount. It
would not be worth the energy to explore other possible orders
of these dependent states. In our motivating example, prior states
apart from IHDR and PLTE would not affect the control flow to the
target bug location. Furthermore, the resulting value of the key
variable %71 png_ptr-> mode is not affected by the order in which
these two states are visited. We let DSFuzz avoid visiting any other
irrelevant states or altering the order for reaching IHDR and PLTE
on the path. This allows us to minimize the number of transitions
needed for reaching the target.

Recurring Dependent States. Some states need to be visited
multiple times to set the correct condition values for making tran-
sitions to later states. In other words, the value of key variables
K could be affected by the number of occurrences of a dependent
state si, rather than being directly affected by some input bytes. We
identify such states by analyzing how their individual occurrence
affects K. Each indirect control dependency corresponds to a vari-
able write in the source code associated with a Store instruction
(e.g., png_ptr->mode |= HAVE_IHDR). If the write statement directly
sets the key variable to a particular value that depends not on other
states, recurring such states produce the same result. We only allow
these states to exist once on the transition path. However, if the key
variable values are computed from their past values (e.g., applying
arithmetic operations to the original value), different rounds of state
visits would produce different results. These dependent states can
be visited multiple times for producing different variable values.

Undeterminable States. In many cases, the order of the depen-
dent states cannot be pre-determined, i.e., when there exists data
flow between multiple dependent states Sk, the order in which
these states are visited can impact the values of the variables in K.
Under this circumstance, dependent states Sg must be visited in a
specific order to satisfy the conditions using K. Therefore, we would

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Ist 2nd

3rd ﬁth

Figure 6: An Example of Transition Path Exploration.

H

experiment with various visit sequences for these interdependent
states to locate the particular order needed.

In certain instances, the dependent state visiting sequence does
not influence the values of variables within set K. Since the visit-
ing order can be arbitrary, we pick just a random order to avoid
unnecessary exploration.

3.4.2 Transition Path Exploration. DSFuzz progressively explores
afeasible transition path to the target deep state by walking through
the identified dependent states, e.g., a transition path to the Bug Loc
through IHDR and PLTE. DSFuzz can pre-determine the order of visit-
ing determinable states, but it cannot do so for recurring dependent
states and undeterminable states. This can result in a large number
of feasible transition paths.

DSFuzz explores these feasible transition paths in a breadth-first
search manner following the order of their length. This is because a
shorter path typically requires solving simpler path constraints and
therefore is potentially easier to explore. In addition to employing
breadth-first search, DSFuzz would prune certain paths to further
reduce the search space. DSFuzz prunes a path if the exploration
of any of its dependent states fails within a timeout, or if DSFuzz
has already explored a shorter path that yields the same K values.
If a path has a pruned prefix, it will not be explored, either. This
strategy significantly reduces the search space in many cases.

After selecting one candidate path, DSFuzz tries to progressively
explore the path by invoking micro directed fuzzing. Each micro di-
rected fuzzing campaign mutates inputs to satisfy certain conditions
and lets the program transit from a prior state to the next depen-
dent state. Whenever DSFuzz fails to satisfy a condition (§3.5.2)
within a timeout, it breaks the current micro fuzzing campaign and
alters to a different transition path. It continues by searching for a
previously explored path that shares the longest common prefix of
dependent states. It then restores the execution context from the
last dependent state in the common prefix. Due to the breadth-first
nature of the exploration process, a shorter path with the same
prefix must have already been explored before exploring a longer
path. Specifically, when all shorter paths have been exhausted, and
a longer path consisting of [states needs to be explored, we can
optimize the process by reusing the previously known inputs to
efficiently reach the first [— 1 visited states.

Figure 6 is an example to demonstrate how the breadth-first
exploration and pruning operates. Assuming that the number of
occurrences and the order of the two dependent states s; and s
are undetermined. DSFuzz initially attempts to explore the shortest
path that includes both dependent states s; and sz, namely {s1, s2},
starting from the initial state so. In this attempt, DSFuzz would first
try to explore the prefix sequence of the path, namely {s;}. After
failing to reach s; during a single micro fuzzing campaign, DSFuzz
prunes all paths that begin with s; and switches to a new path that

Yinxi Liu and Wei Meng

starts with s, namely {sz, s1}. On the second attempt using two
micro fuzzing campaigns, DSFuzz is able to progressively reach
both sz and s1, but is ultimately unable to reach the target state.
Afterward, DSFuzz attempts to explore other short transition paths
that start with {s2, s2}.

3.4.3 Input Range Identification. DSFuzz performs dynamic taint
analysis to identify the dependent input bytes for every state tran-
sition. This is achieved by analyzing the key control variables em-
ployed in the conditional statements corresponding to each tran-
sition. One challenge that we must address is that the same key
variables can take different values from different input bytes in dif-
ferent states (execution contexts). Performing taint analysis on these
key variables without taking into account the execution context
would result in a significant number of input bytes being affected,
whose relationships with different states are not straightforward.

To solve this challenge, we propose a context sensitive depen-
dent input bytes identification method. We identify and mark the
positions (i.e., offset ranges) of the dependent input bytes for each
state transition in the dynamic taint tracking phase. Only the corre-
sponding input bytes are mutated in one micro directed fuzzing task
for solving a state transition. DSFuzz keeps track of the concrete
values of dependent input bytes for successful state transitions, and
replays them to quickly reproduce the past states. For example,
when DSFuzz tries to reach PLTE after IHDR, it preserves the input
bytes corresponding to IHDR and only mutates the bytes after them
for reaching PLTE. Specifically, we consider the following two types
of conditionals where we can produce input ranges to differentiate
one state from another.

The first type consists of loops that iterate over continuous input
bytes, i.e., the first taint access in a loop iteration starts at an input
location (right) after the last taint access of its previous iteration.
Such a loop is widely used in programs to parse continuous data
chunks, e.g., input bytes of THDR and PLTE form two continuous data
chunks in the same size. For this case, we can use the index interval
between different taint accesses over the same key variable to divide
a variable-length input into a series of data blocks. Suppose the
input reaches the prior state in a loop iteration whose first taint
access index is idx; and the first taint access index in the next
iteration is idx;. The extracted data block is s[idx;, idx;]. To reach
a dependent state after the prior state, we should only mutate
input bytes after idx; and preserve the data in s[idx;, idx;]. In
particular, we can mutate data blocks with variable length using
this information, e.g., when the data block has a length that is
dynamically specified or when it ends with specific delimiters.

The other type consists of loops that iterate over a collection of
control-flow-related local variables of the same type. Although the
corresponding input bytes may be spread across the entire input,
the data structures of the variables in different iterations are the
same. Input bytes that influence the same data structure usually
have the same layout. Therefore, by knowing the dependent input
bytes of such one local variable, it is possible to identify and mutate
the dependent input bytes of the other variables. Suppose we want
to mutate input bytes to assign the value of variable b to variable a
in the same type, in order to revisit a previously visited state. Let T
denote the input bytes of a variable. We would recursively mutate
T, using Tj, as follows, where x, y, ... are the attributes in T. When

DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

T, is primitive, its value is set by replacing all of its influencing
bytes with the ones of T,.

T, =Ty, if T, is primitive

update(To, Tp) - {update(Ta.x, Tp.x), update(Tz.y, Tp.y), . . .

3.5 Micro Directed Fuzzing

This section describes how DSFuzz runs micro directed fuzzing
for making a state transition. Overall, this process is similar to
traditional directed fuzzing. The key difference is that it produces
feedback information for the state transition management phase.
As a first step, DSFuzz performs input prioritization to select good
inputs for reaching the target. It then runs the following input
mutation process for each branch condition.

For each variable in the branch condition, DSFuzz analyzes its
taint sources recursively to identify the corresponding critical bytes
in the input. DSFuzz skips the variables whose values do not derive
from external inputs. After analyzing all variables, it collects the
identified critical bytes and mutates these bytes to satisfy the target
condition.

3.5.1 Input Prioritization. We conduct input prioritization to select
the good inputs for further mutation. For progressively satisfying
the indirect control dependencies, we only choose inputs that lead
to a transition path through all the reached dependent states (§3.4.2).
When multiple such inputs exist, we prefer the one closest to the
target condition. To evaluate the distance between a seed input and a
target condition, we use the minimum distance between any branch
condition that the input satisfies and the target condition. The
branch condition with the shortest distance to the target should be
the next condition that DSFuzz flips to take an unexplored branch
towards the target.

We compute the distance between a condition ¢ and a single
target condition ¢ by counting the minimum number of conditions
DSFuzz needs to explicitly flip. In the equation below, Suc(c) de-
notes the successors of ¢, Suc(c, t) denotes the successors of ¢ that
can reach t. The distance between two conditions is zero when they
are the same one. The distance between a condition and the target
is considered infinite if none of its successors can reach the target.
This is because the program will not reach the target through the
branch condition taken by its predecessor. If all successors are capa-
ble of reaching the target, DSFuzz does not need to flip any input
byte to proceed one condition closer to the target. Such conditions
save mutation energy. To encourage visiting such conditions, we
do not increase the distance by one. Instead, we set the minimum
distance of its successors as its distance. When some, but not all,
successors are capable of reaching the target, DSFuzz needs to flip
certain bytes to evaluate an additional condition. This ensures that
the program proceeds towards the target through one of the suc-
cessors reachable to it, rather than through those that cannot reach
it. The distance to the target is one plus the minimum distance of

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

the successors that can reach the target.

0 Jfe=t
00 ,if Suc(c,t) = @
d(c,t) = min d(s,t) ,if Suc(c, t) = Suc(c) A Suc(c) # @
seSuc(c,t)
1+ min d(s,t) ,otherwise.
s€Suc(c,t)

(1)
Although we specify only one target at a time in our micro
fuzzing loop, we can compute the distance between a condition and
a set of target conditions using Equation 2, in which Rr(c) denotes
the set of targets that are reachable from c. The distance is zero
when c is in the target set, and is infinity when none of the targets
is reachable from c. In other situations, the distance is determined
by computing the harmonic mean of the minimum distances from
either c, its predecessors, or even predecessors of predecessors to
each respective target. This method serves to prevent the overall
distance from being needlessly inflated by the presence of infinite
distances to certain targets.

0 JifceT
Jif R =0
d(e,T)={" ifRr(c) B
(Z min d(c’,)™H ™' otherwise.
teTc’EPre(C)U{c}

In the following example, two targets are nested in different
branches of the same if-else conditional. Using the metric in prior
work [34], the distances of both condition_b and condition_c are
four, as they have only one successor to the targets. The distance of
condition_a is two, which is even smaller than the distance of any
of its successors. This would discourage the fuzzer from exploring
deeper states after reaching condition_a.

while (condition_a) {
if (condition_b) {
if (...0) {if (..0) {if (o) |
target 1
1}

1
2
3
4
5
6 } else { condition_c = !condition_b
7 if (...) {if (..) {if (L) |
8 . // target 2
9 1

10 }
11 }

Listing 3: A simplified example showing distance evaluation.

Our metric in Equation 1 and Equation 2 instead can mitigate
this problem. It ensures that the distance of condition_a (i.e., %) is
larger than those of condition_b and condition_c (i.e, &), guiding
the fuzzer to reach deeper states.

3.5.2 Taint Source Analysis. When interesting inputs are discov-
ered in a micro-fuzzing campaign, we run byte-level taint tracking
(line 17 in Algorithm 2) for later identifying the critical input bytes
of a variable. To obtain the taint sources for a given variable v,
we analyze its taint information collected from the byte-level taint
tracking. In most cases, we can collect a determined number of input
bytes and include them as critical bytes. Sometimes the mapping be-
tween the taint source and the variable is handled by some external
function. For example in if (!(f = fopen(fileName->c_str(),
))), we cannot directly obtain the specific input bytes that
affect the variable f (either true or false). For these special cases,

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

we store pairs of argument values and return values of the external
function. This helps us determine which argument values we can
reuse to change the return value to a different one.

3.5.3 Value Exploration. We conduct value exploration to deter-
mine the value to set for the dependent input bytes. In particular, we
do not mutate the input ranges that are already used for prior state
transitions. We apply the following strategies to help determine
what values we should mutate the dependent input bytes into.

Constant Variable. We model the possible constant choices of
variables and directly copy them to the dependent input bytes of
those variables. This includes the constant values or strings that
are compared with the tainted key variables in the conditional. In
addition to assigning directly a value that is used in the cmp or
switch instructions, we observe several functions for comparing
byte arrays. These include bemp, memcmp, memmem, strcmp, strncmp,
strcasecmp, strncasecmp, strcasestr, and strstr. If their argu-
ments are known constant values, we would also directly use these
values in the input to meet the condition. When the variable’s value
is not derived from some input bytes but from the number of depen-
dent states, we break the micro fuzzing and try different dependent
state combinations (§3.4.2).

Length Variable. If the value to be mutated is a length variable
(e.g., a variable obtained by evaluating the length of a data block),
we also need to change the length of the corresponding data block
to match the expected value. More specifically, when comparing
the value of the sizeof, size, strlen, and length functions with
a constant value in a branch condition using >, <, or =, we adjust
the length of the dependent input bytes of the function’s argument
accordingly to satisfy the condition.

Random Exploration. If all the prior strategies do not fit, we fall
back to random exploration. We transform the comparisons into
constraints and mutate the continuous influencing bytes one by
one, ordered by the number of branch conditions they affect.

4 IMPLEMENTATION

We implement a prototype of DSFuzz’s fuzzing loop on top of
ParmeSan [34], with additional feedback mechanisms for progres-
sively satisfying indirect control dependencies. We implement a
static analysis for constructing SDG based on LLVM passes, and
build our dynamic taint analysis based on Polytracker [4]. In the
following, we provide the most important technical details.

4.1 SDG Construction

We construct an SDG on top of the LLVM IR. As we illustrated in
§3.2, SDG consists of the direct and indirect control flow depen-
dencies between basic blocks and their corresponding states. In
contrast to building traditional function-level control flow graphs
(CFGs), which only contain intraprocedural direct control flow
dependencies between blocks, building an SDG requires interproce-
dural information. Thus, we need to merge individual function-level
control flow graphs with a global call graph (CG), thereby produc-
ing an interprocedural control flow graph (ICFG). Based on the
ICFG, we can add indirect control dependencies and exclude basic
blocks without any direct or indirect control dependencies to create
an SDG.

Yinxi Liu and Wei Meng

To construct the ICFG, we start by building a static call graph
from the LLVMIR. Even though we over-approximate the program’s
behavior by including all possible caller-callee pairs, the static call
graph does not include indirect call targets that are only visible
during dynamic execution. To incorporate these indirect targets,
we dynamically update the call graph by running an instrumented
program. We instrument all indirect call sites to enable dynamic
identification of the indirect call targets. This allows for dynamically
updating the indirect call edges in the call graph.

We construct the SDG by performing data flow analysis on top
of the ICFG. To identify indirect control dependencies, we con-
duct backward data flow analysis from each conditional to collect
variables that affect its value. We search for Store instructions to
these variables and check their relative position to their data-flow-
related conditionals to determine the presence of indirect control
dependencies.

As state dependencies may change after an indirect call has
been executed, we update SDG as follows. When dealing with
an indirect call instruction, we start by running the SDG builder
on the called function to update dependencies within the callee
function. Next, we collect the data flows between the arguments to
complete the data dependencies in the caller function. If the indirect
call instruction is generative §4.2, we also update the dependency
between the instruction source and the result. After that, we update
the dependencies brought by the instruction to SDG.

We use SDG to calculate the likelihood of satisfying the condition
for a particular branch. This calculation requires the number of
branches of the conditional. If two conditionals depend on the
values of the same set of variables, we would merge them into one.
In this case, the number of branches in the merged conditional
equals the sum of branches in each individual conditional.

4.2 Precise Data Flow Analysis

We run static data flow analysis at the bitcode level, where the actual
data flow only takes place where the memory is read or written. This
enables us to model the possible source of our data flows using Store
and sink of our data flows using Load. Besides, we identify definition
instructions using Load and Alloca. The remaining instructions are
considered generative if they create new LLVM values.

We also run static taint tracking from the arguments of the main
function and the I/O-related function calls to the states in the SDG,
from which we identify control blocks that depend on external
inputs. This information is used later to determine whether we can
only flip a control block through indirect control dependencies.

We found that indirect control dependency does not hold when
Store and Load are actually referring to different bytes of the same
variable; such dependencies should be removed. For example, the
variable png_ptr->mode consists of a collection of flags that label
whether a particular chunk is parsed. Each flag only refers to a few
bytes. The flag checks are implemented using pairs of & and |=
operations with the same constant value. We would remove the
indirect control dependency (e.g., |= HAVE_IHDR and & HAVE_PLTE)
if the constant value is not the same.

DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

4.3 Dynamic Taint Analysis

Dynamic taint analysis collects all input bytes that affect a prior
state from its taint access records. A taint access record tells which
code block accesses which data block(s). The input stream pro-
cessing loop is detected by analyzing the taint access pattern to
check if the same code block accesses a continuous series of data
blocks. We build our taint analysis on Polytracker [4], instead of
Angora [12] or ParmeSan [34] for the following reason. Their taint
analyses all output the same influencing bytes for a given variable
because they are all built on top of the LLVM Data Flow Sanitizer
[3], yet Polytracker offers two advantages over the taint analyses
in Angora and ParmeSan. First, unlike the taint analyses in Angora
and ParmeSan, which can only track the provenance of up to 16
taints at once, Polytracker can track up to 23! — 1 taints. Second,
it can track every byte of input at once while imposing negligible
performance overhead for almost all inputs.

5 EVALUATION

We extensively evaluate the effectiveness of DSFuzz by conduct-
ing the following experiments. First, we demonstrate that many
applications have deep code locations that can only be reached
via certain dependent states in a preliminary study (§5.2). We then
show that DSFuzz helps efficiently reach bugs in these locations
that are hard to reach by state-of-the-art directed fuzzers (§5.3).
In particular, DSFuzz can detect eight new bugs that other tools
cannot find, and we find that such hard-to-find bugs could persist
for long periods of time (§5.3.3). We also conduct a component-wise
analysis to explain the effectiveness of our design choices (§5.4).

5.1 Datasets and Setup

We chose two widely used datasets for our evaluation. The first
one is the Fuzzbench benchmarks [33], which is Google’s newest
fuzzer benchmarks composed of 21 different programs. The other
is Magma [21], which contains 138 verified bugs in nine programs
with clear documentation and fault conditions. It contains the
second-largest variety of bugs by CWE and the second-largest
ratio of the number of bugs to the number of targets, after the CGC
[2] and LAVA-M [15] datasets, respectively. We found that 16 out
of its 138 targets were deep-state targets. The CGC dataset was
not chosen because it required manual effort to analyze the bug
reports, and some bugs would not cause a crash even with proof of
vulnerability. We did not choose the LAVA-M dataset because most
of its bugs were in shallow program states that had no indirect con-
trol dependencies. This does not align with our goal of exploring
hard-to-reach bugs in deep states.

Since five out of seven programs in Magma (e.g., libpng, libxml2,
openssl, sqlite3, and PHP) are included in the Fuzzbench bench-
marks as well, we merged these two datasets into one. These five
programs are of different versions in Magma and Fuzzbench. For
directed fuzzing, we selected the versions and seeds in Magma that
contained bug condition information §5.4. We removed three pro-
grams in Fuzzbench from our dataset as they cannot be compiled
under clang. We also removed PHP from Magma since it crashed
under our instrumentation. In total, we got a dataset containing
19 different programs, including 13 from Fuzzbench and 6 from
Magma. For the case 1ibjpeg-turbo, we had to create a test harness

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

that invokes the functionalities for processing the input stream, as
the original test harness only processes the file header.

We perform our experiment on an x86_64 server with four 24-
core 2.10GHz Intel Xeon Platinum 8160 CPUs running Debian 9.
We assign each fuzzer to a dedicated core and leave 20% of the
available cores unused to minimize interference. We enable the
Address Sanitizer [39] for each fuzzing campaign and also enable
the Undefined Behavior Sanitizer [32] for the applications that can
be built under it. We compute the p-value in the Mann-Whitney
U test between our tool and the tested baselines following the
suggestion from Klees et al. [24].

5.2 Preliminary Study

Our research is motivated by the observation that some bugs are
nested in deep locations and reaching them requires satisfying
certain indirect control dependencies. We manually analyzed the
dataset and found that 12 of the 19 programs contained indirect
control dependencies, for which our tool can assist in satisfying
them. Since indirect control dependencies are widely found in vari-
ous programs, deep locations containing several indirect control
dependencies may be practical. Using the state dependency anal-
ysis, we identified 139 potentially buggy code locations having
indirect control dependencies. Using a value of k = 0.005 leads to
47 of these code locations being considered deep (§2.2). In practice,
we found this boundary value to be strict enough to filter shadow
bugs while producing a set of deep targets. Users can adjust the
value of k to adjust the number of targets identified. Intuitively,
these deep targets would be hard to reach for fuzzers without using
information about the indirect control dependencies. These deep
targets may not be properly tested due to the difficulty in reaching
them. We tested our hypothesis by running directed fuzzing on
the deep targets identified by DSFuzz in §5.3. We found that our
tool can reach these locations efficiently and uncover previously
unknown bugs, whereas existing approaches have trouble reaching
them.

5.3 Bug Detection

We first demonstrate DSFuzz’s good performance in detecting deep
bugs compared with state-of-the-art directed fuzzers (§5.3.1). We
then show that DSFuzz also performed generally better than other
directed fuzzers in reproducing Magma bugs (§5.3.2), and it detected
previously unknown real-world bugs that other tools failed to detect

(§5.3.3).

5.3.1 Detecting Deep Bugs. DSFuzz was first compared with two
state-of-the-art directed fuzzers AFLGo [10] and ParmeSan [34].
Other related works were either unavailable [11, 25, 47] or cannot
support the dataset we used [22]. In particular, we found that Beacon
[22] crashed when we tried to apply it to Fuzzbench. As a standard
setting in evaluating directed fuzzers, we set a timeout limit of six
hours for each target and give each target five independent trials
[10, 11]. This time limit does not include the preprocessing time of
AFLGo and ParmeSan. DSFuzz evaluates distance dynamically and
does not need such preprocessing.

The targets for directed fuzzing were collected from two sources.
First, we used the 47 deep and potential buggy locations identified
by the state dependency analysis. Second, we used the known buggy

https://google.github.io/fuzzbench/reference/benchmarks/

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 1: Mean time to trigger deep bugs for each directed fuzzer.

Bug Idx AFLGo ParmeSan DSFuzz

Time(s) p-Val Time(s) p-Val Time(s)
1 745 0.007 1877 0.005 1026
2 - 0.003 15060 0.003 8803
3 - 0.006 15506 0.046 9193
4 - 0.005 - 0.005 13872
5 - 0.062 - 0.006 17179
6 - 0.015 - 0.003 10522
7 - 0.006 - 0.006 6626
8 - 0.03 - 0.11 10080
9 - 0.003 - 0.004 5608
10 - 0.006 - 0.006 4002
11 - 0.005 - 0.005 5786
12 - 0.006 - 0.006 15244

— denotes timeout (six hours).

Table 2: Mean time to trigger Magma bugs for each directed fuzzer.

AFLGo ParmeSan DSFuzz

Bug Time(s) p-Val Time(s) p-Val Time(s)
PNG003 16 0.005 102 0.006 38
PNG006 - 0.016 136 0.005 59
TIF005 - 0.002 14937 0.002 437
TIF006 - 0.006 15256 0.006 544

TIF007 6224 0.006 3821 0.006 306
TIF012 10159 0.006 14435 0.006 533
XMLo017 82 0.005 1460 0.004 197
PDF010 14583 0.006 - 0.006 567
PDF016 3914 0.005 452 0.003 146
SSL002 493 0.006 1923 0.008 243

SSL003 296 0.003 1155 0.006 206
SSL009 = 0.005 19810 0.006 664
PNG001 - 0.005 - 0.005 228
PNGO002 - 0.033 - 0.002 1695
PNG007 - 0.006 - 0.006 235
TIF002 - 0.006 - 0.006 495
TIF003 - 0.003 - 0.005 12341
TIF004 = 0.002 = 0.002 18365
TIF006 - 0.005 - 0.005 17232
TIF009 - 0.012 - 0.006 675
XML001 - 0.002 - 0.003 12645
XML005 - 0.006 - 0.006 3372
XML009 - 0.004 - 0.004 258
PDF009 - 0.006 - 0.006 2390
PDFO011 - 0.003 - 0.002 223
PDF017 - 0.006 - 0.006 17235
PDF020 = 0.005 = 0.006 4727

— denotes timeout (six hours).

locations from the Magma dataset to avoid a biased selection of
targets in performance evaluation. Because of the page limit, we
only present the bugs triggered within the time budget.

For our identified deep locations, DSFuzz could reach 39 of them
within the time budget, AFLGo and ParmeSan could reach only 11
and 9, respectively. AFLGo and ParmeSan could reach some deep
targets because their control dependencies could be easily satisfied
with simple mutations from the initial seed inputs. Among the deep
locations, DSFuzz identified 12 bugs, including three that remain
unfixed in the recent version (§5.3.3). AFLGo and ParmeSan can
detect 1 and 3 out of these 12 deep bugs, respectively. We present
the detailed result of reaching these bugs in Table 1.

5.3.2 Reproducing General Bugs. We present in Table 2 the results
for reproducing the Magma bugs, of which five are deep targets
and could only be reached by DSFuzz. DSFuzz could reproduce
other 10 non-deep bugs that other tools could not. Additionally,
it outperformed existing directed fuzzers in reproducing all bugs
except for PNG003 and XML018, which had shallow bugs. DSFuzz
took more time as it had an overhead for setting up the dynamic
taint analysis, which was not required in this simple example. The
result indicates that DSFuzz is more appropriate for detecting bugs
in deep states.

Yinxi Liu and Wei Meng

Table 3: Real-world bugs found by DSFuzz.

Project Version Bugs Bug Type
libjpeg-turbo 2ee7264 2 buffer overflow
libpng b7ea74c 3 memory leak, assertion error
libtiff b51bb15 2 integer overflow, assertion error
libxml2 0137d98 1 memory leak
poppler 7f4ae8 1 buffer overflow
Total 9

5.3.3 New Bugs. This section explores whether DSFuzz can detect
unknown bugs in real-world programs. We applied a timeout limit
of 24 hours and reran DSFuzz for the 19 programs in the dataset.
This experiment used the latest versions of these programs. Nine
bugs were detected across five projects. The detailed results are
shown in Table 3. To deduplicate the bugs, we first used AFL-CMin
on the reported crashes, then compared the call stack, and finally
performed manual verification. In addition, we ran other tools for
24 hours and found that only one assertion error in libpng can be
reproduced by ParmeSan; the other eight bugs could not be found
by any other tool, including general fuzzers in §5.4. We responsibly
disclosed the newly detected bugs to the relevant developers; six
have been confirmed and four have been fixed so far.

The detection of new bugs confirms our hypothesis that long-
lasting bugs may reside in deep code locations that are hard to
test. For example, the buggy memory allocation in Listing 4 was
introduced in version 1.2.1 in 2001 and remained for over 20 years
until it was fixed in September 2022.

Before reaching the buggy location, the program has to pass a
series of conditionals containing a branch that leads to return.

1 if (!(png_ptr->mode & HAVE_IHDR))

2 png_error(png_ptr, DE

3 else if (png_ptr->mode & HAVE_IDAT) return;

4 else if (info_ptr != NULL && (info_ptr->valid &
PNG_INFO_tRNS)) return;

5 if (png_ptr->color_type == GRAY)

6 if (length != 2) return;

7 else if (png_ptr->color_type == RGB)

8 if (length != 6) return;

9 else if (png_ptr->color_type == PALETTE){

10 if (length > (png_uint_32)png ptr->num_palette ||
length > PNG_MAX PALETTE LENGTH) return;

11 if (length == 0) return;

12 }

13 else return;

14 if (png_crc_finish(png_ptr, 0)) return;

15

16 //bug location

17 (png_bytep)png_malloc(png_ptr, (png_uint_32)

PNG_MAX_PALETTE_LENGTH) ;

Listing 4: A simplified real-world bug example.

Without proper direction, the fuzzer has a high chance of spending
energy on exploring those return branches and would not reach
the deep buggy location in a limited time budget. Even for directed
greybox fuzzers, some constraints are hard to satisfy as they require
the existence of variable setting operations that are not reached in
the current control flow. In particular, the prior three conditionals
that check the value of png_ptr->mode and info_ptr->valid cannot
be altered easily. Simple input byte mutations cannot directly update
the value of these variables. Changes can only be made by code
that processes the prior data blocks. To successfully solve these
constraints, the input should contain an IHDR data block before the
tRNS data block and should not contain an IDAT data block before
it. DSFuzz can generate such data blocks using its special design to
satisfy indirect control dependencies.

DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

T |
] —— AFLGo
% 051 —— ParmeSan | |
by —— DSFuzz
g
%
Us [1 I I I I I |
0 2 4 6 8 10 12

fuzzing time (hours)

Figure 7: Dependent state coverage for each directed fuzzer.

This example also demonstrates the effectiveness of our micro
directed fuzzing strategy for reaching deep states progressively. In
particular, this bug is nested in a deep code location with seven
dependent states. We present the progress for reaching these de-
pendent states for each directed fuzzer in Figure 7. As the diagram
illustrates, AFLGo and ParmeSan could reach some dependent states
at an early stage, but they had difficulty reaching those that had
indirect control dependencies. Thus, their dependent state cover-
ages increased after 3.8 and 2.5 hours, respectively, but could not
be improved further. DSFuzz, however, gradually increased its de-
pendent state coverage until it reached the deep code location after
7.9 hours.

5.4 Component-wise Analysis

We aim to evaluate our contributions in identifying deep targets,
exploring state transition paths toward these targets, and mutating
inputs to trigger transitions. Since only DSFuzz addresses these
challenges, we conducted component-wise analyses to demonstrate
its effectiveness. As a first step, we tested whether DSFuzz can
detect general bugs and compared it with state-of-the-art general
fuzzers. To do so, we set a random unexplored branch as the target
of each micro directed fuzzing campaign. Next, we used the 12
deep bugs that DSFuzz triggered in Table 1 as the test cases, and
collected how many bugs it could still trigger without the transition
path exploration and input range identification components. We
present the detailed results in Table 5.

General Bug Detection. The unique feature of DSFuzz is its
special design for satisfying indirect control dependencies. Deep
states must contain certain hard-to-satisfy indirect control depen-
dencies, but other hard-to-reach blocks may also contain some
(probably fewer) and DSFuzz could help satisfy them to reach those
blocks. Therefore, we developed DSFuzz,,,,4, the undirected mode
of DSFuzz, to test its ability of general bug detection. DSFuzz,,, 4
targets randomly one unexplored branch condition for each mi-
cro directed fuzzing campaign. We compare DSFuzz,,; with a
number of different general fuzzers: 1) AFL [45], a classic mutation-
based greybox fuzzer; 2) AFLSmart [37], a greybox fuzzer with
input-structure awareness; 3) Mopt [29], an AFL-based fuzzer with
optimized mutation scheduling; 4) Angora [12], a fuzzer with taint
propagation analysis; and 5) REDQUEEN, a fuzzer that tries to solve
checksums and magic bytes. We chose them as they are state-of-
the-art tools related to the optimizations in DSFuzz. We are aware
of recent related works in fuzzing with taint inference [19, 28],
but do not include them in our comparison as these tools are not
available at the time of writing. We ran each tool for 24 hours with
five repetitions.

The detailed results are presented in Table 4. We evaluate fuzzers
using the mean edge coverage and the number of detected bugs.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 4: Edge coverage and bug detection for each general fuzzer.

Project AFL AFLSmart Mopt Angora REDQUEEN DSFUZZ,ng
freetype2-2017 20362 20222 20279 17018 27365 21399
harfbuzz-1.3.2 8404 8403 8401 7124 8632 8426
jsoncpp_jsoncpp_- 638 638 638 599 638 638
fuzzer

lems-2017-03-21 3021 3129 2913 4292 3257 4520
libpcap_fuzz_both 97 102 96 88 3330 3109
mbedtls_fuzz_- 8238 8701 8433 8129 8240 8603
dtlsclient

openthread-2019-12- 6207 6011 6212 5916 7149 6827
23

proj4-2017-08-14 5322 5348 5215 17278 5062 18237
re2-2014-12-09 3529 3532 3529 3037 3525 3238
vorbis-2017-12-11 2167 2167 2171 2016 2167 2167
woff2-2016-05-06 1862 1858 1857 101 1838 1858
zlib_zlib_uncom- 961 965 965 923 961 965
press_fuzzer

libjpeg-turbo 3690 3665 3752 3406 3546 3802
libpng 1945 2122 1944 2183 2089 2328
libtiff 36563 36685 36397 29140 34657 35021
libxml2 12625 12817 12473 9823 12471 12784
openssl 13774 13772 13775 13840 13775 13912
poppler 38726 38760 39061 37282 37159 39872
sqlite3 34819 34925 34651 27749 32988 34193
Number of Bugs 4 3 5 0 3 5
p-Value 0.006 0.006 0.006 0.006 0.006

Table 5: Mean time to trigger deep bugs for each tool.

Bugldx DSFuzz pyre DSFUZZ yana DSFuzz

1 2823 1394 1026
2 11232 9237 8803
3 18332 13382 9193
4 - 13872
5 - - 17179
6 - 20229 10522
7 - 6873 6626
8 - 11298 10080
9 - 6023 5608
10 10293 4428 4002
11 - 5912 5786
12 - - 15244

— denotes timeout (six hours).

We also present one mean p-value for each compared tool in the
table. In general, we found that DSFuzz performed the best in 9
out of the 19 cases, especially in the four projects that contained
many indirect control dependencies, including lems, libjpeg, libpng,
and poppler. In them, DSFuzz outperformed the second best tool
by 5.3%, 2.3%, 6.6%, and 2.1%, respectively. In these cases, DSFuzz
did not mutate combinations of data blocks that would not result in
new coverage. For the proj4 and openssl cases, DSFuzz performed
the best as they contained constraints that can only be resolved by
our dynamic taint analysis. There were four cases, i.e., json, vor-
bis, woff2, and zlib, for which several tools could achieve a similar
average coverage. These cases did not have complex roadblocks: a
simple random mutation can satisfy most of the constraints. AFLS-
mart outperformed all the other tools in five cases, for which it
utilized the input format information that was too complex to be
learned by other tools. REDQUEEN outperformed all the other tools
in four cases that included a lot of checksums and magic bytes.
Although DSFuzz could produce some of the magic bytes correctly
through its value exploration strategies (§3.5.3), it was inefficient
due to its reliance on dynamic taint analysis, which took more time
than the mutation strategy used in REDQUEEN. DSFuzz also found
the most number of bugs, including one in libxml2 that other tools
cannot find.

Transition Path Exploration. We developed DSFuzz 4, which
is a version of DSFuzz that does not order the potential valid transi-
tion paths according to the strategies in §3.4.2. Instead, it randomly
chooses one of the potential paths. We observed that three bugs

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

cannot be reproduced under this setting, and all the remaining
bugs required more execution time. As a result of its improper
transition path exploration strategy, DSFuzz ,.,,; would explore
a longer transition path containing unnecessary dependent states,
which increased analysis time and prevented it from detecting the
three bugs. This result shows that our transition path exploration
strategy is important to the effectiveness of DSFuzz.

Input Range Identification. DSFuzz would produce the same
influencing bytes of a given variable compared to existing tech-
niques (§4.3), but can conservatively choose to only mutate some
bytes according to the state information it dynamically maintains
(§3.4.3). Such a design contributes to a substantial degree of its
efficiency. We developed DSFUZZ p, . which is DSFuzz without
input range identification. It would mutate over all the input bytes
in each iteration as long as they are identified as critical bytes.
We found that DSFuzz . could only trigger four bugs. This is
because DSFuUzz ;. cannot store the already explored context
without input range identification. In the remaining eight bugs,
the complex constraints required a particular order of data blocks,
which was difficult to mutate without the information about the ex-
plored data blocks. Even for the four bugs that it triggered, DSFuzz
byte took 132% more time on average to reach them, suggesting
that our input range identification technique also helped satisfy
some simple constraints.

6 LIMITATIONS

Taint propagation in a complex program with long paths might
be time-consuming, even though we have attempted to limit the
number of calls through progressive fuzzing. The problem can be
further alleviated by monitoring only a limited number of new
branches for taint access.

Our implementation fails to satisfy some constraints (magic bytes
with complex computations) as solving them is not our primary
objective. If needed, DSFuzz can skip these constraints in order to
save fuzzing resources, or combine other tools, such as symbolic
execution, to support them.

Currently, our tool does not support the analysis of binaries.
Nevertheless, our solution still applies when we can get their bitcode
from reassembly.

7 RELATED WORK

Researchers have proposed various techniques for exploring hard-
to-reach code locations.

Directed Greybox Fuzzing. A large number of works aim to reach
deep code locations by only spending fuzzing energy on deep tar-
gets. AFLGo [10] is the first to use directed greybox fuzzing. Ankou
[30] leverages distance-based fitness function, dynamic PCA, and
adaptive seed pool update to assist directed fuzzing. Ijon [7] explores
deep state spaces via human-in-the-loop annotation. ParmeSan [34]
locates targets by sanitizers and solves path constraints by taint
tracking. CAFL [25] conducts mutations toward a sequence of con-
straints rather than a set of target sites. DSFuzz statically locates
a number of deep locations and applies a distance calculator for
fuzzing toward them.

Meaningful Input Generation. People also try to reach deep
code locations by improving the quality of generated inputs. One

Yinxi Liu and Wei Meng

direction is to model the input format to successfully pass the
parsing stage, following pre-defined grammar [6, 40], semantics
[20], or data blocks [37]. Recent work GRIMOIRE [9] proposes
to automate the identification of structured input specifications,
WEIZZ [18] automatically identifies data blocks. Another direction
is to focus on some inputs with higher security impact [43]. DSFuzz
first infers the range of data blocks and then focuses on mutating
combinations of data blocks that might reveal new coverage.

Dependent States. Researchers have found that some taints alter
program states and implicitly change control flows. Such program-
state changes are not covered by traditional code coverage. They
propose inference-based taint analysis to identify these taints and
prioritize their mutation. GREYONE [19] identifies the dependence
between bytes and constraints and proposes a model to determine
which branch to explore, which bytes to mutate, and how to mutate
in each step. InvsCov [17] augments code coverage by learning the
relationships among program variables from the input corpus and
dependencies of those variables over all the observed executions.
PATA [28] identifies the critical bytes in inputs that correspond
with sequentially visited variables and mutates these bytes. DSFuzz
identifies dependent states that change the execution context of the
current state, and mutates different combinations of these states.

Critical Bytes Mutation. Mutating the correct bytes that pass
complex conditions (i.e., roadblocks) has been a key problem in
improving code coverage. Vuzzer [38] collects immediate values
and mutates critical bytes that are likely to satisfy the constraints.
Angora [12] uses taint propagation to solve path constraints with-
out symbolic execution. REDQUEEN [8] solves the magic values
and checksums by observing the arguments to function calls and
comparing instructions via virtual machine introspection. Laf-intel
[1] splits multi-byte comparisons into several single-byte compar-
isons at the compiler level. SAVIOR [13] prioritizes the concolic
execution of the seeds that are likely to uncover more bugs. DSFuzz
uses dynamic taint analysis to identify the critical bytes and help
constraint solving.

8 CONCLUSION

Input generation is challenging when the target location is reach-
able only by satisfying indirect control dependencies. We present
DSFuzz, a directed fuzzing scheme for efficiently reaching deep
states and detecting new bugs. To satisfy constraints that are im-
plicitly affected by indirect control dependencies, it identifies de-
pendent state transitions and constructs them progressively. It also
carries out micro directed fuzzing to reach each dependent state.
We evaluated DSFuzz over two widely used benchmarks, showing
that it outperforms state-of-the-art tools and detected eight new
bugs that other tools failed to find.

ACKNOWLEDGMENT

The work described in this paper was partly supported by a grant
from the Research Grants Council of the Hong Kong SAR, China
(Project No.: CUHK 14210219).

REFERENCES

[1] 2020. Circumventing Fuzzing Roadblocks with Compiler Transformations. https:
//lafintel.wordpress.com/.

https://lafintel.wordpress.com/
https://lafintel.wordpress.com/

DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

2020. DARPA Cyber
CyberGrandChallenge.

2021. Data flow sanitizer - clang 13 documentation. https://clang.llvm.org/docs/
DataFlowSanitizer.html.

2022. PolyTracker: An LLVM-based instrumentation tool for universal taint track-
ing, dataflow analysis, and tracing. https://github.com/trailofbits/polytracker.
Cornelius Aschermann. 2020. Algorithmic improvements for feedback-driven
fuzzing. Ph.D. Dissertation. Ruhr University Bochum, Germany.

Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars.. In Proceedings of the 2019 Annual Network and Distributed
System Security Symposium (NDSS). San Diego, CA, USA.

Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.
Tjon: Exploring Deep State Spaces via Fuzzing. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA, USA.
Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In Proceedings of the 2019 Annual Network and Distributed System Security Sym-
posium (NDSS). San Diego, CA, USA.

Tim Blazytko, Matt Bishop, Cornelius Aschermann, Justin Cappos, Moritz
Schlogel, Nadia Korshun, Ali Abbasi, Marco Schweighauser, Sebastian Schinzel,
Sergej Schumilo, et al. 2019. GRIMOIRE: Synthesizing structure while fuzzing. In
Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara, CA,
USA.

Marcel Bshme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). Dallas, TX, USA.

Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng
Wu, and Yang Liu. 2018. Hawkeye: Towards a desired directed grey-box fuzzer.
In Proceedings of the 25th ACM Conference on Computer and Communications
Security (CCS). Toronto, Canada.

Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy (Oakland). San
Francisco, CA, USA.

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang, Tao
Wei, and Long Lu. 2020. Savior: Towards bug-driven hybrid testing. In Proceedings
of the 41st IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA,
USA.

Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang, Dinghao
Wu, and Wenke Lee. 2021. One engine to fuzz’em all: Generic language processor
testing with semantic validation. In Proceedings of the 42nd IEEE Symposium on
Security and Privacy (Oakland). San Francisco, CA, USA.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. Lava: Large-scale
automated vulnerability addition. In Proceedings of the 37th IEEE Symposium on
Security and Privacy (Oakland). San Jose, CA, USA.

Grand Challenge. https://github.com/

[16] Joe W Duran and Simeon Ntafos. 1981. A report on random testing. In ICSE,

Vol. 81. Citeseer, 179-183.

Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. 2021. The Use of
Likely Invariants as Feedback for Fuzzers. In Proceedings of the 30th USENIX
Security Symposium (Security). Virtual Event.

Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. 2020. WEIZZ: Auto-
matic grey-box fuzzing for structured binary formats. In Proceedings of the 29th
International Symposium on Software Testing and Analysis (ISSTA). Los Angeles,
CA, USA.

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In Proceedings
of the 29th USENIX Security Symposium (Security). Virtual Event.

HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines..
In Proceedings of the 2019 Annual Network and Distributed System Security Sym-
posium (NDSS). San Diego, CA, USA.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A ground-
truth fuzzing benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 3 (2020), 1-29.

Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles
Zhang. 2022. Beacon: Directed grey-box fuzzing with provable path pruning. In
Proceedings of the 43nd IEEE Symposium on Security and Privacy (Oakland). San
Francisco, CA, USA.

Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo
Kim. 2021. WINNIE: Fuzzing Windows Applications with Harness Synthesis and
Fast Cloning. In Proceedings of the 2021 Annual Network and Distributed System
Security Symposium (NDSS). San Diego, CA, USA.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS). Toronto, Canada.

Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided
Directed Greybox Fuzzing. In Proceedings of the 30th USENIX Security Symposium

[26

[27

[28

[29

[30

(31

32]

@
&

[34

[35

[36

[39

[40

[41

[42

[43

[44

[45

=
&S

[47

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

(Security). Virtual Event.

Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). Montpellier,
France.

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 11th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). Paderborn, Germany.
Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu,
Zhe Liu, and Jiaguang Sun. 2022. PATA: Fuzzing with Path Aware Taint Analysis.
In Proceedings of the 43nd IEEE Symposium on Security and Privacy (Oakland).
San Francisco, CA, USA.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized mutation scheduling for fuzzers. In
Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara, CA,
USA.

Valentin JM Manés, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding
grey-box fuzzing towards combinatorial difference. In Proceedings of the 42nd
International Conference on Software Engineering (ICSE). Seoul, Korea.
Alessandro Mantovani, Andrea Fioraldi, and Davide Balzarotti. 2022. Fuzzing
with data dependency information. In Proceedings of the 43nd IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA, USA.

Clang User’s Manual. 2022. Undefined behavior sanitizer. https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html.

Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Abhishek
Arya. 2021. Fuzzbench: an open fuzzer benchmarking platform and service. In
Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). Athens,
Greece.

Sebastian Osterlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
ParmeSan: Sanitizer-guided Greybox Fuzzing. In Proceedings of the 29th USENIX
Security Symposium (Security). Virtual Event.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. Fuzzfactory: domain-specific fuzzing with waypoints. Pro-
ceedings of the ACM on Programming Languages 3, OOPSLA, 1-29.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by
Program Transformation. In Proceedings of the 39th IEEE Symposium on Security
and Privacy (Oakland). San Francisco, CA, USA.

Van-Thuan Pham, Marcel Bohme, Andrew E Santosa, Alexandru Rizvan Cici-
ulescu, and Abhik Roychoudhury. 2019. Smart greybox fuzzing. IEEE Transactions
on Software Engineering 47, 9 (2019), 1980-1997.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In Pro-
ceedings of the 2017 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA, USA.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the 2012 USENIX Annual Technical Conference (ATC). Boston, MA, USA.
Prashast Srivastava and Mathias Payer. 2021. Gramatron: Effective grammar-
aware fuzzing. In Proceedings of the 30th International Symposium on Software
Testing and Analysis (ISSTA). Online.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In Pro-
ceedings of the 2016 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA, USA.

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the 31th IEEE Symposium on Security and Privacy (Oakland). Oak-
land, CA, USA.

Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu, and
Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization.. In Proceedings of the 2020 Annual Network
and Distributed System Security Symposium (NDSS). San Diego, CA, USA.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Security Symposium (Security). Baltimore, MD, USA.

Michal Zalewski. 2015. American fuzzy lop.

Shunfan Zhou, Zhemin Yang, Dan Qiao, Peng Liu, Min Yang, Zhe Wang, and
Chenggang Wu. 2022. Ferry:State-Aware Symbolic Execution for Exploring State-
Dependent Program Paths. In Proceedings of the 31st USENIX Security Symposium
(Security). Boston, MA, USA.

Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-
box Fuzzing through Deep Learning. In Proceedings of the 29th USENIX Security
Symposium (Security). Virtual Event.

https://github.com/CyberGrandChallenge
https://github.com/CyberGrandChallenge
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://github.com/trailofbits/polytracker
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

	Abstract
	1 Introduction
	2 Background and Problem Statement
	2.1 Existing Approaches
	2.2 Problem Statement

	3 Design
	3.1 Overview
	3.2 State Dependency Analysis
	3.3 Fuzzing Loop
	3.4 State Transition Management
	3.5 Micro Directed Fuzzing

	4 Implementation
	4.1 SDG Construction
	4.2 Precise Data Flow Analysis
	4.3 Dynamic Taint Analysis

	5 Evaluation
	5.1 Datasets and Setup
	5.2 Preliminary Study
	5.3 Bug Detection
	5.4 Component-wise Analysis

	6 Limitations
	7 Related work
	8 Conclusion
	References

