DSFuzz: Detecting Deep State Bugs with Dependent State Exploration

Yinxi Liu
The Chinese University of Hong Kong
Hong Kong SAR, China
yyliu@cse.cuhk.edu.hk

Wei Meng
The Chinese University of Hong Kong
Hong Kong SAR, China
wei@cse.cuhk.edu.hk

ABSTRACT

Traditional random mutation-based fuzzers are ineffective at reaching deep program states that require specific input values. Consequently, a large number of deep bugs remain undiscovered. To enhance the effectiveness of input mutation, previous research has utilized taint analysis to identify control-dependent critical bytes and only mutates those bytes. However, existing works do not consider indirect control dependencies, in which the critical bytes for taking one branch can only be set in a basic block that is control dependent on a series of other basic blocks. These critical bytes cannot be identified unless that series of basic blocks are visited in the execution path. Existing approaches would take an unacceptably long time and computation resources to attempt multiple paths before setting these critical bytes. In other words, the search space for identifying the critical bytes cannot be effectively explored by the current mutation strategies.

In this paper, we aim to explore a new input generation strategy for satisfying a series of indirect control dependencies that can lead to deep program states. We present DSFuzz, a directed fuzzing scheme that effectively constructs inputs for exploring particular deep states. DSFuzz focuses on the deep targets reachable by only satisfying a set of indirect control dependencies. By analyzing the conditions that a deep state indirectly depends on, it can generate dependent critical bytes for taking the corresponding branches. It also rules out the control flows that are unlikely to lead to the target state. As a result, it only needs to mutate under a limited search space. DSFuzz significantly outperformed state-of-the-art directed greybox fuzzers in detecting bugs in deep program states: it detected eight new bugs that other tools failed to find.

CCS CONCEPTS

• Security and privacy
 Software security engineering.

KEYWORDS

Fuzzing; Program analysis; Software testing

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:

1 INTRODUCTION

Mutation-based fuzzers have been widely adopted in bug detection [16]. People have found that many program states are easy to reach, but some deep states are only accessible through a specific sequence of prior states in the right order. The bugs that only manifest themselves in the deep states are thus difficult to be detected. For instance, network protocols typically have complex internal states, some of which are only reached after receiving several specific types of messages; Rogue-like games move forward only when certain sequences of user inputs are provided. Similarly, data processing programs often contain hard-to-reach deep states. They would typically transit among multiple states (or processing units) depending on the already processed data bytes.

To visit the prior dependent states and the deep state in order, the program inputs must meet very complex and specific constraints. These constraints are hard to satisfy by fuzzers, as a deep state’s conditional statement can be directly reached via a preferred path, e.g., a short path, without having to reach its previous dependent states.

The 1bpng library is such an example. A simplified view is presented in Listing 1: it iteratively processes PNG image data chunks using multiple processing units in a for loop.

```c
for (;;) {
    PNG_CONST png_bytep chunk_name = png_ptr->chunk_name;
    if (!png_memcmp(chunk_name, png_IDAT, 4))
        png_ptr->mode |= HAVE_IDAT; // IDAT
    if (!png_memcmp(chunk_name, png_IHDR, 4))
        png_ptr->mode |= HAVE_IHDR; // IHDR
    if (!png_memcmp(chunk_name, png_PLTE, 4))
        png_ptr->mode |= HAVE_PLTE; // PLTE
    if (!png_memcmp(chunk_name, png_IDAT, 4)) { // Bug location
        png_ptr->mode &= HAVE_IDAT; // IDAT
        ... // Bug location
    }
}
```

Listing 1: A simplified example showing indirect control dependency across different iterations.

The code to process a chunk in type IDAT (lines-12-13) is only executed if the chunk follows IHDR chunks and PLTE chunks. In other words, the program must have reached the IHDR and PLTE states corresponding to lines 4 and 6 before it can reach line 12 and
trigger the bug in line 13. One feasible bug-triggering path is L3→L4→L5→L6→L7→L8→L10→L12→L13, which involves at least three loop iterations. The bug in state IDAT exhibits not only direct control dependency on L7, L8 and L10, but also indirect control dependency on state IDHR (L3) and state PLTE (L5). The fuzzers must address both types of control dependencies in the path constraint to reach the deep state and trigger the bugs there.

Existing fuzzers can discover and solve the direct control dependencies [31], but it still remains challenging to satisfy the indirect control dependencies for the deep-state bugs. Coverage-guided fuzzers can easily generate several inputs that separately satisfy the conditions in line 3, 5 and 7, but can hardly generate one input that satisfies all three in a specific order. Directed fuzzers are none the wiser. Even by setting line 13 as the target, they would usually prefer the shortest path that reaches state IDAT, rather than a longer path that first reaches IDHR and PLTE, and then enters IDAT via at least three loop iterations [10, 34].

One approach to solving the complex path constraints is performing dynamic taint analysis to identify the constraints’ dependent input bytes and mutate them [8, 12, 18, 19, 26, 28, 38, 42]. However, using taint analysis alone cannot adequately address the issue of indirect control dependencies and order state transitions for three reasons. First, the dependent input bytes for indirect control dependencies might not be efficiently discovered. Dynamic taint analysis covers mostly the executed code. The indirect control dependent code for the deep targets might not be visited by the fuzzers, e.g., they are on paths far away from the targets. In such cases, taint analysis would fail as it cannot deduce all the critical dependent input bytes for satisfying these constraints.

Second, it is challenging to precisely infer the control dependent input bytes for each conditional statement on the path. For instance, a local variable (e.g., chunk_name in Listing 1) could take values from different data chunks (that are located at different positions in the input) and be used in multiple conditional statements (e.g., L3, L5 and L7) on one path. For such cases, existing approaches either fail to distinguish these different data chunks [12, 38, 42], or need to mutate all the possible value combinations of these data chunks [8, 17, 19, 26–28, 46].

Third, the dependencies need to be satisfied by mutating different critical input bytes in the correct order. The existing fuzzers are unaware of the correct order of state transitions for reaching the deep location. As a result, they must examine numerous combinations of conditional branches to uncover the correct execution path, which could be time-consuming and sometimes infeasible under limited resources. This problem gets magnified for programs that process long inputs consisting of a large number of influencing data chunks. While only a few combinations of these data chunks can reach the deep state, existing approaches can only try all possible combinations one by one without inferring the expected order. Besides, there may be a large number of indirect control dependencies that need to be satisfied for deep states to be reached in the real world (Listing 4). Consequently, existing approaches are unable to efficiently reach the deep states.

In this paper, we aim to solve the challenges in detecting real-world bugs hidden in deep states reachable by only satisfying their indirect control dependencies. We observe that reaching such a deep state requires first reaching the prior dependent states in the correct order, which is hard for conventional fuzzers. We propose DSFuzz, a directed fuzzer that smartly explores the dependent program states to reach deep states and detect new bugs. It is equipped with two new techniques that we developed—a static state dependency analyzer and a progressive micro directed fuzzing scheme.

Specifically, we first identify dependent state transitions and build a state dependency graph (SDG), then identify deep states and set them as targets. We build SDG by first constructing the edges representing direct control dependencies from a def-use analysis, then storing the data flow information from a static inter-procedural data flow analysis, and finally identifying indirect control dependencies using the data flow information. For each state on the graph, we determine whether it is deep by computing the chance of satisfying all its indirect control dependencies.

We then start directed fuzzing toward these deep targets gradually. The fuzzer must follow the required state transitions on the SDG to reach the target deep state. The task can be divided into multiple phases, where in each phase DSFuzz solves a micro directed fuzzing task. In each phase DSFuzz progressively approaches the target state by making one transition from the currently reached state to the next dependent state on the state transition path. To make a state transition, it sets the next dependent state as the target and then performs micro directed fuzzing. In order to efficiently arrive at the previously reached states, it identifies their dependent input bytes and preserves their values. This is achieved by conducting a taint analysis on the conditions that enable each state transition, followed by analyzing the input ranges that influence the value of these conditions. By only conducting taint analysis on the conditional statements of dependent state transitions, DSFuzz avoids wasting energy on running taint analysis that cannot deduce dependent input bytes. It then mutates only the input bytes influencing the current state transition to solve the micro directed fuzzing task. Such a divide-and-conquer strategy allows DSFuzz to solve the challenge of satisfying complex indirect control dependencies.

We extensively evaluated DSFuzz with two widely used datasets—Fuzzbench [33] and Magma [21]. DSFuzz significantly outperformed two state-of-the-art directed greybox fuzzers—AFLGo [10] and ParmeSan [34]—in a variety of programs. It detected all bugs that can be detected by the two fuzzers combined, and was the most efficient tool for almost all bugs. It outperforms the two fuzzers in detecting not only the deep state bugs we identified, but also non deep state bugs in Magma. This is because our solution limits the fuzzer’s search space by only targeting the dependent state transitions. It also detected eight previously unknown bugs that other tools failed to detect from 47 potentially buggy deep locations we identified, including an almost two-decades-old one. We responsibly disclosed the newly detected bugs to the relevant developers. With a component-wise evaluation, we demonstrate that our state dependency analysis and progressive micro directed fuzzing technique are both needed for detecting deep state bugs.

We made the following contributions.

- We uncover that deep program states having indirect control dependencies exist widely but are difficult to reach with state-of-the-art techniques.
- We propose to satisfy indirect control dependencies by identifying the implicitly required dependent states and reaching them progressively.
• We integrate the above analyses into DSFuzz, a directed fuzzing scheme for efficiently reaching deep states.
• We demonstrate the capabilities of DSFuzz—it outperformed two state-of-the-art tools in two widely used benchmarks, and detected eight new bugs that other tools failed to find.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, we discuss existing approaches and their limitations (§2.1), and define our research problem, goal, and scope (§2.2).

2.1 Existing Approaches

Researchers have proposed various methods to reach deep states and detect deep bugs, but no existing approaches are specialized in satisfying indirect control dependencies.

Directed Fuzzing. A straightforward solution is to set the deep state locations as the targets and apply directed fuzzing [10, 34]. As discussed above, however, state-of-the-art directed fuzzers are discouraged from generating the necessary dependent data block-s/bytes that help reach prior dependent states (e.g., IHDR and PLTE) because such inputs could be more distant from the targets compared to other states (e.g., IDAT).

Structured Input Generation. People also try to generate structured inputs to pass the complex validity checks that block mutation-based fuzzers from further testing. For instance, the data block of IHDR might require a different length than the data block PLTE; one cannot simply mutate one to another by changing the chunk name bytes. Existing work mitigates this problem by modeling the input format [9, 37] or the range of data chunks [18]. However, these approaches can only ensure the generated data blocks are valid. The data blocks are not ordered in a way that could lead to a series of state transitions toward the deep states.

Critical Byte Mutation. Researchers have tried to solve the complex constraints to reach the deep states. A common solution is to identify the critical bytes that affect the control flow and further mutate these bytes [8, 12, 38]. However, this approach cannot efficiently discover the dependent input bytes for indirect control dependencies. The analysis can only cover executed code, while the indirect control dependent code for the deep state targets might not be visited. More complex solutions either only support minimal environment/instruction sets [14, 23, 35] or need to use symbolic execution [36, 38, 41, 44]. There is already evidence to suggest that setting up and maintaining a symbolic environment is not worth the effort [5].

Control Dependent State Identification. Researchers have found that the deep states must be reached via certain dependent states. Some works identify representative inputs that reach these dependent states to provide the necessary execution context for reaching deep states [8, 17, 26, 27]. However, such approaches do not consider the different occurrence sequences of these dependent states, and therefore cannot handle loops over them.

Some works propose to record all the occurrence sequences of the dependent state [19, 28, 46]. They would typically consider the variable chunk_name as the key variable and mutate different occurrence sequences of its value. Such a strategy would bring a large search space as most of the sequences do not trigger the

Figure 1: Direct Dependency

We consider a program state deep if it is only accessible through two state-of-the-art fuzzers that satisfy such dependencies, as they do not intentionally differentiate the dependent prior states from the other possible states along exploration.

We consider a program state deep if it is only accessible through a specific series of indirect control dependencies, because the traditional directed fuzzers are good at satisfying the direct control dependencies. They are unlikely to reach a deep state when there are many hard-to-satisfy indirect control dependencies, as the majority of their fuzzing energy would be wasted on mutations that do not satisfy these dependencies. As a result, guiding the program to reach a deep state is challenging without identifying and satisfying all the prior states it needs to transit through first.
We define the deep state as a state where the chance P of passing all indirect control dependencies is lower than a boundary K, i.e., $P < K$. Even though there are other definitions of deep states, the ones we focus on are both prevalent and previously ignored. Programs that contain lots of indirect control dependencies would benefit the most from our technique. For example, applications that process streaming data blocks typically follow different control flows based on the content of the already processed blocks, creating a chain of dependent data block processing states. Besides, applications with a large number of user-specified settings contain many dependent states. Effectively exploring these states is challenging, especially when the number of options for each setting is large.

We aim to explore previously hard-to-reach deep bugs by identifying not only direct but also indirect control dependencies between program states. We also aim to develop an efficient method to search for satisfying inputs for these deep bugs. Our solution is not intended as a replacement for existing general fuzzers, but as a complement. For instance, users can use our static analysis to check whether their target programs and code locations contain many indirect control dependencies. Another tool can then be used if the target programs and code locations do not contain any indirect control dependencies.

3 DESIGN

We first give an overview of our solution using the same motivating example ($\S3.1$), then present the detailed component-wise design of DSFuzz following the workflow in Figure 3. DSFuzz builds the state dependency graph of a program and analyzes the indirect control dependencies in the graph to identify the target deep states ($\S3.2$). Based on this information, we can perform directed fuzzing on these targets ($\S3.3$). We explore the possible state transition paths to approach the targets ($\S3.4$), and employ a micro directed fuzzing campaign for transitioning to each individual dependent state on the paths ($\S3.5$).

3.1 Overview

We design DSFuzz to explore deep program states efficiently. Transitions to these states are control dependent on some critical variables set in prior states. We have shown in the motivating example (Listing 1) that the exact state transition ($i.e.$, IHDR, PLT, IDAT) is critical to uncover the bug, and such transitions involve some indirect control dependencies. In particular, $\text{png_ptr}\to\text{mode}$ must first be set at line 4 and 6 for passing the checks in line 8 and 10. This indicates that state IHDR and state PLT could be the prior states of state IDAT, as the transition to state IDAT is dependent on the critical variable $\text{png_ptr}\to\text{mode}$ set in state IHDR and state PLT.

DSFuzz can automatically identify such state transitions and build a state dependency graph (SDG). It first conducts def-use analysis to construct the initial SDG, and incrementally adds indirect call edges with dynamic taint analysis. Based on the SDG, DSFuzz can identify deep states and set them as targets ($i.e.$, the target in line 13). Such deep states are indirectly control dependent on some prior states: their control flows ($i.e.$, line 8 and 10) are influenced by values set in prior states ($i.e.$, line 4 and 6).

DSFuzz then performs directed fuzzing to efficiently explore a (short) transition path on the SDG to reach the deep states. It would first identify a sequence of dependent states for reaching a deep state. For example, to reach line 13, it identifies two dependent states IHDR and PLT that are in line 4 and 6, respectively. It then performs micro directed fuzzing to gradually make a sequence of transitions to reach these dependent states and the final target state, $i.e.$, transitions from the entry state to IHDR and PLT, and then to the target state IDAT. In each micro directed fuzzing task, DSFuzz tries to make a state transition from the current state S to the next state T. To identify and mutate the dependent input bytes for making the state transition, DSFuzz first runs dynamic taint analysis to obtain all the input bytes that have data flow to the dependent condition of state T. It then eliminates the input bytes that affect state S and precisely locates the ones that only affect state T.

3.2 State Dependency Analysis

DSFuzz builds a state dependency graph (SDG) to analyze the conditions of transitions among the states and find the deep states that have indirect control dependencies on other prior states. These deep states and their dependent prior states are set as the targets of our directed fuzzer, which we will describe in more detail in $\S3.3$. We first present how we construct an SDG ($\S3.2.1$), then show how we identify deep states based on its indirect control dependencies ($\S3.2.2$).

3.2.1 State Dependency Graph Construction. An SDG consists of nodes representing basic blocks and their corresponding states, and two types of directed edges between nodes representing either direct or indirect control dependencies between the states. We use solid directed edges to represent direct control dependencies and dashed directed edges to represent indirect control dependencies. Use Figure 4 as an example: node $\%163$ Bug Loc is directly control dependent (as represented by a solid directed edge) on $\%71$ $\text{png_ptr}\to\text{mode}$, which is indirectly control dependent (as represented by a dashed directed edge) on Store $\%71$. We also use undirected edges to link nodes whose representing basic blocks are adjacent in the program’s bitcode, $i.e.$, Store $\%71$ is located right after $\%105$ IHDR in the bitcode.

As the first step of constructing an SDG, we leverage existing def-use analysis to construct the edges representing direct control dependencies and store the data flow information. This information will later be used for analyzing the indirect control dependencies. Algorithm 1 describes the steps we take for analyzing direct/indirect control dependencies and building the SDG.

Direct Control Dependency. We collect direct control dependencies from a def-use analysis and collect data flow information from a static inter-procedural data flow analysis. We dynamically update the SDG by adding the indirect call sites ($\S4.1$). We use two data structures to store the data flow information of an SDG: one at the variable level and the other at the block level. The variable level one is DFI—a map that stores pairs of definition and write dependencies between LLVM Values (i.e., the base class of all values computed in the bitcode). The block level one is SDG_b—another map that stores all the variable level data flow information corresponding to a basic block b. We differentiate different states of the same block by their execution context, $i.e.$, the blocks that have already been executed.
We perform static data flow analysis on all instructions in the order of program execution. The analysis operates differently depending on the type of each instruction. If the instruction is a definition, we initialize a corresponding set of uses in DFI (line 6). If the instruction is a generative one that creates a new LLVM value (§4.2), we record the direct control dependency between the instruction source and the result (line 9). In the case of a call instruction, we invoke a subprocess running Algorithm 1 for its target function, which would perform a similar static data flow analysis and provide information about the dependencies between function arguments (line 12). We can then store the argument dependencies into DFI (line 13). After that, we can connect data flow information with SDG nodes (line 16). To represent all data flows to a node, we store the DFI of the definitions of all uses in the instructions contained within the node. The stored data flow information will be later used to build the edge information in SDG (line 25).

Indirect Control Dependency. We analyze the SDG data flow information to identify indirect control dependencies. According to our definition in §2.2, a target state is indirectly control-dependent on another under two criteria. First, the indirectly control-dependent state sets the value of a variable, which is later used in a conditional for transiting into the target state. Second, a path reaching the target state does not necessarily reach the dependent state first; otherwise, they are direct control dependent.

To efficiently locate potential dependent states, we first search for the patterns where a data write operation flows to a control block. We iterate over the write statements in SDG (line 20), and extract the target control blocks in data flows (line 21). Nonetheless, the write statement does not necessarily enables a path to the target. The value set by the write statement could, for instance, prevent the control block from taking the branch to the target. We implement a more precise data flow analysis (§4.2) to rule out certain situations where the write statement cannot satisfy the expected branch condition.

After locating the data flow pattern, we check if the destination control block is reachable via a path that does not visit the variable write statement \(v \) (line 22). Figure 4 gives an example of how we analyze the bitwise in Listing 2 to find the indirect control dependency between %105 IHDR and %163 Bug Loc.

```
1 // %70: chunk_name, %71: png_ptr->mode
2 %102 = tail call i32 @bcmp(i8 * %70, i16 * %104)
3 br label %104
4 %104 = icmp eq i32 %102, 0
5 br i1 %104, label %105, label %109
6 // HDR
7 %106 = load i64, i64 * %71
8 %107 = or i64 %106, %108
9 store i64 %107, i64 * %71 // Store into %71
10 ... %109
11 %104 = tail call i32 @bcmp(i8 * %70, i16 * %104)
12 br label %105
13 %105 = icmp eq i32 %104, 0
14 br i1 %105, label %107, label %109
15 // HDR
16 %106 = load i64, i64 * %71 // Load from %71
17 %109 = and i64 %106, %108
18 %107 = icmp eq i64 %109, 0
19 br i1 %107, label %108, label %109
20 ... %113
```

Listing 2: A simplified example of indirect control dependency.

By identifying the variable write statement with Store, we can get %71 png_ptr->mode, which flows to the control block %160 in line 19. Since the Store instruction is under the control block %105 IHDR, and %163 Bug Loc depends on the control block %160, there exists a path from %105 IHDR to %163 Bug Loc that does not include the write statement. Besides, %105 IHDR and %163 Bug Loc are
control dependent on the same conditional that evaluates chunk_name, which is executed once in each loop iteration. Getting to Bug Loc requires a prior iteration that gets toIHDR.

3.2.2 Deep States and Deep Targets. We determine whether a given target state \(b \) is deep based on the chance of satisfying all its indirect control dependencies (§2.2). We use \(c_i \in C \) to denote all the indirect control dependencies between \(b \) and its dependent conditions. The probability that a dependent condition \(c_i \) is satisfied is \(p_i \), which is approximated as the number of satisfying branches \(n_i \) divided by the number of all possible branches \(n^i \), i.e., \(p_i = \frac{n_i}{n^i} \). We discuss the implementation details for calculating \(n^i \) in §4.1. The chance of satisfying all indirect control dependencies is further calculated by multiplying the chances of satisfying individual ones, i.e., \(P = \prod p_i \).

Our computation uses two approximations. Firstly, we assume each branch has the same chance of being satisfied on average; and secondly, we assume the satisfactions of individual dependencies are independent. While these assumptions may not always hold in practice, this simple metric is already helpful in estimating the difficulty of satisfying indirect control dependencies. A better computation could potentially lead to a more precise estimation, which we leave as future work.

We further refine the target locations by using the sanitizer-instrumented code locations inside the deep states we identify. Those locations are already marked as potentially buggy by the sanitizer, making it easier for the fuzzer to find potential bugs.

For example, Bug Loc is marked as potentially buggy by a sanitizer and has indirect control dependencies on IHDR and PLTE. Suppose the conditional for reaching IHDR and PLTE contains \(N \) branches, the chance of meeting both dependencies is \(\frac{1}{N^2} \). As it turns out, \(N = 49 \), which suggests that 99.96% of the fuzzing trials would not reach the target. Therefore, state Bug Loc is considered a deep target.

3.3 Fuzzing Loop

After collecting the deep states, DSFuzz tries to reach them through directed fuzzing. The fuzzing loop of DSFuzz is different from a traditional directed fuzzer, in that it progressively reaches a target by reaching each of its prior dependent states.

In particular, DSFuzz divides the task into multiple phases, and solves a micro directed fuzzing task in each phase. It progressively approaches the target state by making one transition from the currently reached state to the next dependent state on the state transition path (§3.4). To make a state transition, it sets the next dependent state as the target and then performs micro directed fuzzing. The micro directed fuzzing operates similarly to a traditional direct fuzzer. It mutates specific input bytes to satisfy a series of path constraints to reach a given code location (§3.5).

Algorithm 2 illustrates the entire process. The algorithm accepts as input a set of input seeds \(I \), a set of targets \(T \), two versions of target programs (including one instrumented version \(\text{program}_t \) for taint tracking and one without \(\text{program}_t \) for efficiency), and a metric \(d \) for computing the distance from a branch condition to a target. The metric \(d \) is similar to but different from the one in ParmeSan [34]. While ParmeSan calculates distances between conditional, DSFuzz calculates distances between SDG states. Using \(d \) would result in a lower distance for the deep states compared to the metric in ParmeSan. Such a lower distance would encourage DSFuzz to reach the deep states rather than the shadow states. The state transition management phase accepts target locations with their indirect control dependencies. Analyzing indirect control dependencies produces a series of dependent states for exploration (line 3). In order to reach the target location, it progressively explores a potentially feasible transition path through these dependent states (line 4). As an initial step in exploring each candidate transition path, DSFuzz identifies the dependent input bytes of the previously reached states in the path and avoids further mutations of those bytes (line 5). It then produces a priority queue that contains information about the conditions that must be satisfied (line 6). Each item in the priority queue is a tuple that contains three elements, namely the branch condition to flip for reaching a dependent state, the distance information calculated from the state dependency graph, and a serial number based on the number of times the corresponding dependent state appears in the candidate path. The serial number is set to one when the corresponding state occurs only once on the candidate transition path. It is increased by one for each new occurrence of the state. The items are ordered
Dependent State Analysis

- Determinable
- Recurring
- Undeterminable

Path Exploration

- Obtain prefix
- Visited prefix
- Input range identification

Figure 5: The Procedural Diagram of State Transition Management.

3.4 State Transition Management

In this subsection, we explore the necessary state transition paths. These paths allow the fuzzer to drive the program to transit through the correct sequence of dependent states and progressively approach the target state. Figure 5 presents the detailed procedure.

As the first step, DSFuzz identifies the necessary dependent states of each target through dependent state analysis (§3.4.1). These dependent states can be connected via transitions to form potentially feasible transition paths to the target. However, due to the limitation of the static inter-procedural analysis, we cannot pre-determine the number of occurrences of these dependent states or their order. Therefore, given the same set of dependent states, there could exist a huge number of possible transition paths, e.g., some states need to be visited multiple times.

We overcome this huge complexity with three strategies (§3.4.2). First, we perform transition path exploration using a breadth-first search approach with a preference for shorter paths. Second, after exhausting all shorter paths, if we need to explore a longer path consisting of I states, we retrieve its visited prefix to reuse the known inputs and efficiently reach the initial I − 1 visited states. Third, we conduct path pruning if DSFuzz fails to explore any of its containing states within a timeout. Paths with pruned prefixes will not be explored, resulting in a significant reduction of the search space in many cases.

DSFuzz proceeds with each candidate transition path by making a transition to the next state through micro directed fuzzing. Before each micro directed fuzzing campaign, DSFuzz utilizes precise dynamic taint tracking to examine the input ranges of the dependent states already visited, and employs these ranges to direct subsequent mutations (§3.4.3). DSFuzz finally mutates the corresponding input bytes used in the control code blocks of the next state to effectuate the transition.

3.4.1 Dependent State Analysis. We aim to efficiently build a potentially feasible transition path by analyzing how candidate dependent states (obtained by §3.2) can be connected. We analyze whether a state should be included on the path, whether a state should be repetitively visited, and whether different state visiting orders result in different execution contexts.

Determinable States. DSFuzz first focuses on states where it is possible to determine the order in which they are visited. It computes the order based on the position of their parent conditionals in the program’s control flow graph. States that do not affect the target or any of its predecessor states are considered irrelevant states. They should not occur in the transition path and waste DSFuzz’s energy on exploring them. The input bytes of irrelevant states are removed to save the analysis time and reduce interference. DSFuzz would also randomly determine the order for dependent states whose order does not affect the value of key variables. This is the case when the states modify different key variables, or when each state increases or decreases the key variable by a fixed amount. It would not be worth the energy to explore other possible orders of these dependent states. In our motivating example, prior states apart from IHDR and PLTE would not affect the control flow to the target bug location. Furthermore, the resulting value of the key variable S1.png_ptr->mode is not affected by the order in which these two states are visited. We let DSFuzz avoid visiting any other irrelevant states or altering the order for reaching IHDR and PLTE on the path. This allows us to minimize the number of transitions needed for reaching the target.

Recurring Dependent States. Some states need to be visited multiple times to set the correct condition values for making transitions to later states. In other words, the value of key variables K could be affected by the number of occurrences of a dependent state \mathbf{x}_k, rather than being directly affected by some input bytes. We identify such states by analyzing how their individual occurrence affects K. Each indirect control dependency corresponds to a variable write in the source code associated with a Store instruction (e.g., $\text{png_ptr}\rightarrow \text{mode} = \text{HAVE_IHDR}$). If the write statement directly sets the key variable to a particular value that depends not on other states, recurring such states produce the same result. We only allow these states to exist once on the transition path. However, if the key variable values are computed from their past values (e.g., applying arithmetic operations to the original value), different rounds of state visits would produce different results. These dependent states can be visited multiple times for producing different variable values.

Undeterminable States. In many cases, the order of the dependent states cannot be pre-determined, i.e., when there exists data flow between multiple dependent states \mathbf{x}_k, the order in which these states are visited can impact the values of the variables in K. Under this circumstance, dependent states \mathbf{x}_k must be visited in a specific order to satisfy the conditions using K. Therefore, we would
experiment with various visit sequences for these interdependent states to locate the particular order needed.

In certain instances, the dependent state visiting sequence does not influence the values of variables within set \(K \). Since the visiting order can be arbitrary, we pick just a random order to avoid unnecessary exploration.

3.4.2 Transition Path Exploration

DSFuzz progressively explores a feasible transition path to the target deep state by walking through the identified dependent states, e.g., a transition path to the Bug Loc through IHDR and PLTE. DSFuzz can pre-determine the order of visiting determinable states, but it cannot do so for recurring dependent states and undeterminable states. This can result in a large number of feasible transition paths.

DSFuzz explores these feasible transition paths in a breadth-first search manner following the order of their length. This is because a shorter path typically requires solving simpler path constraints and therefore is potentially easier to explore. In addition to employing breadth-first search, DSFuzz would prune certain paths to further reduce the search space. DSFuzz prunes a path if the exploration of any of its dependent states fails within a timeout, or if DSFuzz has already explored a shorter path that yields the same \(K \) values. If a path has a pruned prefix, it will not be explored, either. This strategy significantly reduces the search space in many cases.

After selecting a candidate path, DSFuzz tries to progressively explore the path by invoking micro directed fuzzing. Each micro directed fuzzing campaign mutates inputs to satisfy certain conditions and lets the program transit from a prior state to the next dependent state. Whenever DSFuzz fails to satisfy a condition (§3.5.2) within a timeout, it breaks the current micro fuzzing campaign and lets the program transit from a prior state to the next dependent state after the prior state, we should only mutate the bytes after them, namely \(\{ s_1, s_2 \} \).

3.4.3 Input Range Identification

DSFuzz performs dynamic taint analysis to identify the dependent input bytes for every state transition. This is achieved by analyzing the key control variables employed in the conditional statements corresponding to each transition. One challenge that we must address is that the same key variables can take different values from different input bytes in different states (execution contexts). Performing taint analysis on these key variables without taking into account the execution context would result in a significant number of input bytes being affected, whose relationships with different states are not straightforward.

To solve this challenge, we propose a context sensitive dependent input bytes identification method. We identify and mark the positions (i.e., offset ranges) of the dependent input bytes for each state transition in the dynamic taint tracking phase. Only the corresponding input bytes are mutated in one micro directed fuzzing task for solving a state transition. DSFuzz keeps track of the concrete values of dependent input bytes for successful state transitions, and replays them to quickly reproduce the past states. For example, when DSFuzz tries to reach PLTE after IHDR, it preserves the input bytes corresponding to IHDR and only mutates the bytes after them for reaching PLTE. Specifically, we consider the following two types of conditionals where we can produce input ranges to differentiate one state from another.

The first type consists of loops that iterate over continuous input bytes, i.e., the first taint access in a loop iteration starts at an input location (right) after the last taint access of its previous iteration. Such a loop is widely used in programs to parse continuous data chunks, e.g., input bytes of IHDR and PLTE form two continuous data chunks in the same size. For this case, we can use the index interval between different taint accesses over the same key variable to divide a variable-length input into a series of data blocks. Suppose the input reaches the prior state in a loop iteration whose first taint access index is \(idx_1 \) and the first taint access index in the next iteration is \(idx_2 \). The extracted data block is \(s[idx_1, idx_2] \). To reach a dependent state after the prior state, we should only mutate input bytes after \(idx_2 \) and preserve the data in \(s[idx_1, idx_2] \).

In particular, we can mutate data blocks with variable length using this information, e.g., when the data block has a length that is dynamically specified or when it ends with specific delimiters.

The other type consists of loops that iterate over a collection of control-flow-related local variables of the same type. Although the corresponding input bytes may be spread across the entire input, the data structures of the variables in different iterations are the same. Input bytes that influence the same data structure usually have the same layout. Therefore, by knowing the dependent input bytes of such one local variable, it is possible to identify and mutate the dependent input bytes of the other variables. Suppose we want to mutate input bytes to assign the value of variable \(b \) to variable \(a \) in the same type, in order to revisit a previously visited state. Let \(T \) denote the input bytes of a variable. We would recursively mutate \(T_a \) using \(T_b \) as follows, where \(x, y, \ldots \) are the attributes in \(T \). When
As a first step, this is because the program will not reach the target through the DSFuzz it. The distance to the target is one plus the minimum distance of the program proceeds towards the target through one of the suc-
certain bytes to evaluate an additional condition. This ensures that DSFuzz successors are capable of reaching the target,
distance of its successors as its distance. When some, but not all,
does not increase the distance by one. Instead, we set the minimum
to proceed one condition closer to the target. Such conditions
ble of reaching the target,
branch condition taken by its predecessor. If all successors are capa-
cean reach the target condition.
Notes the successors of DSFuzz needs to explicitly flip. In the equation below,
condition that the input satisfies and the target condition. The
to a transition path through all the reached dependent states (§3.4.2).
We conduct input prioritization to select good
inputs for reaching the target. It then runs the following input
mutation process for each branch condition.
For each variable in the branch condition, DSFuzz analyzes its
taint sources recursively to identify the corresponding critical bytes in the input. DSFuzz skips the variables whose values do not derive from external inputs. After analyzing all variables, it collects the
identified critical bytes and mutates these bytes to satisfy the target condition.

3.5 Micro Directed Fuzzing
This section describes how DSFuzz runs micro directed fuzzing for making a state transition. Overall, this process is similar to
traditional directed fuzzing. The key difference is that it produces feedback information for the state transition management phase.
As a first step, DSFuzz performs input prioritization to select good
inputs for reaching the target. It then runs the following input
mutation process for each branch condition.

For each variable in the branch condition, DSFuzz analyzes its
taint sources recursively to identify the corresponding critical bytes in the input. DSFuzz skips the variables whose values do not derive from external inputs. After analyzing all variables, it collects the
identified critical bytes and mutates these bytes to satisfy the target condition.

3.5.1 Input Prioritization. We conduct input prioritization to select the
good inputs for further mutation. For progressively satisfying the
indirect control dependencies, we only choose inputs that lead to a transition path through all the reached dependent states (§3.4.2). When multiple such inputs exist, we prefer the one closest to
the target condition. To evaluate the distance between a seed input and a
target condition, we use the minimum distance between any branch
condition that the input satisfies and the target condition. The
branch condition with the shortest distance to the target should be
the next condition that DSFuzz flips to take an unexplored branch
towards the target.

We compute the distance between a condition c and a single
target condition t by counting the minimum number of conditions
DSFuzz needs to explicitly flip. In the equation below, Suc(c) denotes the successors of c, Suc(c, t) denotes the successors of c that
can reach t. The distance between two conditions is zero when they
are the same one. The distance between a condition and the target
is considered infinite if none of its successors can reach the target.
This is because the program will not reach the target through the
branch condition taken by its predecessor. If all successors are capa-
bility of reaching the target, DSFuzz does not need to flip any input
byte to proceed one condition closer to the target. Such conditions
save mutation energy. To encourage visiting such conditions, we
do not increase the distance by one. Instead, we set the minimum
distance of its successors as its distance. When some, but not all,
successors are capable of reaching the target, DSFuzz needs to flip
certain bytes to evaluate an additional condition. This ensures that
the program proceeds towards the target through one of the suc-
cessors reachable to it, rather than through those that cannot reach
it. The distance to the target is one plus the minimum distance of
the successors that can reach the target.

\[
\begin{aligned}
d(c, t) &= \begin{cases}
0 & \text{if } c = t \\
\infty & \text{if } \text{Suc}(c, t) = \emptyset \\
\min_{s \in \text{Suc}(c, t)} d(s, t) & \text{if } \text{Suc}(c, t) = \{s\} \land \text{Suc}(c, t) \neq \emptyset \\
1 + \min_{s \in \text{Suc}(c, t)} d(s, t) & \text{otherwise}.
\end{cases}
\end{aligned}
\]

(1)

Although we specify only one target at a time in our micro fuzzing loop, we can compute the distance between a condition and
a set of target conditions using Equation 2, in which RT(c) denotes the set of targets that are reachable from c. The distance is zero when c is in the target set, and is infinity when none of the targets
is reachable from c. In other situations, the distance is determined
by computing the harmonic mean of the minimum distances from
either c, its predecessors, or even predecessors of predecessors to
each respective target. This method serves to prevent the overall
distance from being needlessly inflated by the presence of infinite
distances to certain targets.

\[
\begin{aligned}
d(c, T) &= \begin{cases}
0 & \text{if } c \in T \\
\infty & \text{if } RT(c) = \emptyset \\
\frac{1}{\sum_{t \in T} \min_{c' \in \text{Pre}(c) \cup \{c\}} d(c', t)^{-1}} & \text{otherwise}.
\end{cases}
\end{aligned}
\]

(2)

In the following example, two targets are nested in different
branches of the same if-else conditional. Using the metric in prior
work [34], the distances of both condition_b and condition_c are
two, as they have only one successor to the targets. The distance of condition_a is two, which is even smaller than the distance of any
of its successors. This would discourage the fuzzer from exploring
deeper states after reaching condition_a.

This is a simplified example showing distance evaluation.

Our metric in Equation 1 and Equation 2 instead can mitigate
this problem. It ensures that the distance of condition_a (i.e., \(\frac{1}{2}\)) is
larger than those of condition_b and condition_c (i.e., \(\frac{20}{7}\)), guiding
the fuzzer to reach deeper states.

3.5.2 Taint Source Analysis. When interesting inputs are discovered
in a micro-fuzzing campaign, we run byte-level taint tracking
(line 17 in Algorithm 2) for later identifying the critical input bytes of a variable. To obtain the taint sources for a given variable v,
we analyze its taint information collected from the byte-level taint tracking. In most cases, we can collect a determined number of input
bytes and include them as critical bytes. Sometimes the mapping be-
tween the taint source and the variable is handled by some external function. For example in \textbf{if} (yaptığı fopen(filename->c_str(),
"wb")), we cannot directly obtain the specific input bytes that affect the variable fd (either \textbf{true} or \textbf{false}). For these special cases,
we store pairs of argument values and return values of the external function. This helps us determine which argument values we can reuse to change the return value to a different one.

3.5.3 Value Exploration. We conduct value exploration to determine the value to set for the dependent input bytes. In particular, we do not mutate the input ranges that are already used for prior state transitions. We apply the following strategies to help determine what values we should mutate the dependent input bytes into.

Constant Variable. We model the possible constant choices of variables and directly copy them to the dependent input bytes of those variables. This includes the constant values or strings that are compared with the tainted key variables in the conditional. In addition to assigning directly a value that is used in the cmp or switch instructions, we observe several functions for comparing byte arrays. These include bcmp, memcmp, memmem, strcmp, strncmp, strcasecmp, strncasecmp, strstr, and strstr. If their arguments are known constant values, we would also directly use these values in the input to meet the condition. When the variable’s value is not derived from some input bytes but from the number of dependent states, we break the micro fuzzing and try different dependent state combinations (§3.4.2).

Length Variable. If the value to be mutated is a length variable (e.g., a variable obtained by evaluating the length of a data block), we also need to change the length of the corresponding data block to match the expected value. More specifically, when comparing the value of the sizeof, size, strlen, and length functions with a constant value in a branch condition using $>$, $<$, or $=$, we adjust the length of the dependent input bytes of the function’s argument accordingly to satisfy the condition.

Random Exploration. If all the prior strategies do not fit, we fall back to random exploration. We transform the comparisons into constraints and mutate the continuous influencing bytes one by one, ordered by the number of branch conditions they affect.

4 IMPLEMENTATION

We implement a prototype of DSFuzz’s fuzzing loop on top of ParmeSan [34], with additional feedback mechanisms for progressively satisfying indirect control dependencies. We implement a static analysis for constructing SDG based on LLVM passes, and build our dynamic taint analysis based on Polytracker [4]. In the following, we provide the most important technical details.

4.1 SDG Construction

We construct an SDG on top of the LLVM IR. As we illustrated in §3.2, SDG consists of the direct and indirect control flow dependencies between basic blocks and their corresponding states. In contrast to building traditional function-level control flow graphs (CFGs), which only contain intraprocedural direct control flow dependencies between blocks, building an SDG requires interprocedural information. Thus, we need to merge individual function-level control flow graphs with a global call graph (CG), thereby producing an interprocedural control flow graph (ICFG). Based on the ICFG, we can add indirect control dependencies and exclude basic blocks without any direct or indirect control dependencies to create an SDG.

To construct the ICFG, we start by building a static call graph from the LLVM IR. Even though we over-approximate the program’s behavior by including all possible caller callee pairs, the static call graph does not include indirect call targets that are only visible during dynamic execution. To incorporate these indirect targets, we dynamically update the call graph by running an instrumented program. We instrument all indirect call sites to enable dynamic identification of the indirect call targets. This allows for dynamically updating the indirect call edges in the call graph.

We construct the SDG by performing data flow analysis on top of the ICFG. To identify indirect control dependencies, we conduct backward data flow analysis from each conditional to collect variables that affect its value. We search for Store instructions to these variables and check their relative position to their data-flow-related conditional variables to determine the presence of indirect control dependencies.

As state dependencies may change after an indirect call has been executed, we update SDG as follows. When dealing with an indirect call instruction, we start by running the SDG builder on the called function to update dependencies within the callee function. Next, we collect the data flows between the arguments to complete the data dependencies in the caller function. If the indirect call instruction is generative §4.2, we also update the dependency between the instruction source and the result. After that, we update the dependencies brought by the instruction to SDG.

We use SDG to calculate the likelihood of satisfying the condition for a particular branch. This calculation requires the number of branches of the conditional. If two conditionals depend on the values of the same set of variables, we would merge them into one. In this case, the number of branches in the merged conditional equals the sum of branches in each individual conditional.

4.2 Precise Data Flow Analysis

We run static data flow analysis at the bitcode level, where the actual data flow only takes place where the memory is read or written. This enables us to model the possible source of our data flows using Store and sink of our data flows using Load. Besides, we identify definition instructions using Load and Alloca. The remaining instructions are considered generative if they create new LLVM values.

We also run static taint tracking from the arguments of the main function and the I/O-related function calls to the states in the SDG, from which we identify control blocks that depend on external inputs. This information is used later to determine whether we can only flip a control block through indirect control dependencies.

We found that indirect control dependency does not hold when Store and Load are actually referring to different bytes of the same variable; such dependencies should be removed. For example, the variable png_ptr->mode consists of a collection of flags that label whether a particular chunk is parsed. Each flag only refers to a few bytes. The flag checks are implemented using pairs of &= and |= operations with the same constant value. We would remove the indirect control dependency (e.g., |= HAVE_IHDR and &= HAVE_PLTE) if the constant value is not the same.
4.3 Dynamic Taint Analysis
Dynamic taint analysis collects all input bytes that affect a prior state from its taint access records. A taint access record tells which code block accesses which data block(s). The input stream processing loop is detected by analyzing the taint access pattern to check if the same code block accesses a continuous series of data blocks. We build our taint analysis on Polytracker [4], instead of Angora [12] or ParmeSan [34] for the following reason. Their taint analyses all output the same influencing bytes for a given variable because they are all built on top of the LLVM Data Flow Sanitizer [3], yet Polytracker offers two advantages over the taint analyses in Angora and ParmeSan. First, unlike the taint analyses in Angora and ParmeSan, which can only track the provenance of up to 16 taints at once, Polytracker can track up to $2^{31} - 1$ taints. Second, it can track every byte of input at once while imposing negligible performance overhead for almost all inputs.

5 EVALUATION
We extensively evaluate the effectiveness of DSFuzz by conducting the following experiments. First, we demonstrate that many applications have deep code locations that can only be reached via certain dependent states in a preliminary study (§5.2). We then show that DSFuzz helps efficiently reach bugs in these locations that are hard to reach by state-of-the-art directed fuzzers (§5.3). In particular, DSFuzz can detect eight new bugs that other tools cannot find, and we find that such hard-to-find bugs could persist for long periods of time (§5.3.3). We also conduct a component-wise analysis to explain the effectiveness of our design choices (§5.4).

5.1 Datasets and Setup
We chose two widely used datasets for our evaluation. The first one is the Fuzzbench benchmarks [33], which is Google’s newest fuzzer benchmarks composed of 21 different programs. The other is Magma [21], which contains 138 verified bugs in nine programs with clear documentation and fault conditions. It contains the second-largest variety of bugs by CWE and the second-largest ratio of the number of bugs to the number of targets, after the CGC [2] and LAVA-M [15] datasets, respectively. We found that 16 out of its 138 targets were deep-state targets. The CGC dataset was not chosen because it required manual effort to analyze the bug reports, and some bugs would not cause a crash even with proof of vulnerability. We did not choose the LAVA-M dataset because most of its bugs were in shallow program states that had no indirect control dependencies. This does not align with our goal of exploring hard-to-reach bugs in deep states.

Since five out of seven programs in Magma (e.g., libpng, libxml2, openssl, sqlite3, and PHP) are included in the Fuzzbench benchmarks as well, we merged these two datasets into one. These five programs are of different versions in Magma and Fuzzbench. For directed fuzzing, we selected the versions and seeds in Magma that contained bug condition information §5.4. We removed three programs in Fuzzbench from our dataset as they cannot be compiled under clang. We also removed PHP from Magma since it crashed under our instrumentation. In total, we got a dataset containing 19 different programs, including 13 from Fuzzbench and 6 from Magma. For the case ffmpeg-turbo, we had to create a test harness that invokes the functionalities for processing the input stream, as the original test harness only processes the file header.

We perform our experiment on an x86_64 server with four 24-core 2.10GHz Intel Xeon Platinum 8160 CPUs running Debian 9. We assign each fuzzer to a dedicated core and leave 20% of the available cores unused to minimize interference. We enable the Address Sanitizer [39] for each fuzzing campaign and also enable the Undefined Behavior Sanitizer [32] for the applications that can be built under it. We compute the p-value in the Mann-Whitney U test between our tool and the tested baselines following the suggestion from Klees et al. [24].

5.2 Preliminary Study
Our research is motivated by the observation that some bugs are nested in deep locations and reaching them requires satisfying certain indirect control dependencies. We manually analyzed the dataset and found that 12 of the 19 programs contained indirect control dependencies, for which our tool can assist in satisfying them. Since indirect control dependencies are widely found in various programs, deep locations containing several indirect control dependencies may be practical. Using the state dependency analysis, we identified 139 potentially buggy code locations having indirect control dependencies. Using a value of $k = 0.005$ leads to 47 of these code locations being considered deep (§2.2). In practice, we found this boundary value to be strict enough to filter shadow bugs while producing a set of deep targets. Users can adjust the value of k to adjust the number of targets identified. Intuitively, these deep targets would be hard to reach for fuzzers without using information about the indirect control dependencies. These deep targets may not be properly tested due to the difficulty in reaching them. We tested our hypothesis by running directed fuzzing on the deep targets identified by DSFuzz in §5.3. We found that our tool can reach these locations efficiently and uncover previously unknown bugs, whereas existing approaches have trouble reaching them.

5.3 Bug Detection
We first demonstrate DSFuzz’s good performance in detecting deep bugs compared with state-of-the-art directed fuzzers (§5.3.1). We then show that DSFuzz also performed generally better than other directed fuzzers in reproducing Magma bugs (§5.3.2), and it detected previously unknown real-world bugs that other tools failed to detect (§5.3.3).

5.3.1 Detecting Deep Bugs. DSFuzz was first compared with two state-of-the-art directed fuzzers AFLGo [10] and ParmeSan [34]. Other related works were either unavailable [11, 25, 47] or cannot support the dataset we used [22]. In particular, we found that Beacon [22] crashed when we tried to apply it to Fuzzbench. As a standard setting in evaluating directed fuzzers, we set a timeout limit of six hours for each target and give each target five independent trials [10, 11]. This time limit does not include the preprocessing time of AFLGo and ParmeSan. DSFuzz evaluates distance dynamically and does not need such preprocessing.

The targets for directed fuzzing were collected from two sources. First, we used the 47 deep and potential buggy locations identified by the state dependency analysis. Second, we used the known buggy
Within the time budget, AFLGo and ParmeSan could reach only 11 in deep states. This result indicates that DSFuzz could reproduce other 10 non-deep bugs that other tools could not. Additionally, it could only be reached by ParmeSan; the other eight bugs could not be found by any other tool, including general fuzzers in §5.4. We responsibly disclosed the newly detected bugs to the relevant developers; six have been confirmed and four have been fixed so far.

The detection of new bugs confirms our hypothesis that long-lasting bugs may reside in deep code locations that are hard to test. For example, the buggy memory allocation in Listing 4 was introduced in version 1.2.1 in 2001 and remained for over 20 years until it was fixed in September 2022.

Before reaching the buggy location, the program has to pass a series of conditionals containing a branch that leads to return. Without proper direction, the fuzzer has a high chance of spending a lot of time without finding the bug.

Table 1: Mean time to trigger deep bugs for each directed fuzzer.

<table>
<thead>
<tr>
<th>Bug Id</th>
<th>AFLGo</th>
<th>DSFuzz</th>
<th>ParmeSan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time(s)</td>
<td>p-Val</td>
<td>Time(s)</td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>0.007</td>
<td>1927</td>
</tr>
<tr>
<td>2</td>
<td>0.003</td>
<td>15060</td>
<td>0.003</td>
</tr>
<tr>
<td>3</td>
<td>0.006</td>
<td>15306</td>
<td>0.046</td>
</tr>
<tr>
<td>4</td>
<td>0.005</td>
<td>15306</td>
<td>0.046</td>
</tr>
<tr>
<td>5</td>
<td>0.062</td>
<td>0.006</td>
<td>17179</td>
</tr>
<tr>
<td>6</td>
<td>0.015</td>
<td>0.003</td>
<td>10521</td>
</tr>
<tr>
<td>7</td>
<td>0.006</td>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td>8</td>
<td>0.03</td>
<td>0.11</td>
<td>10080</td>
</tr>
<tr>
<td>9</td>
<td>0.003</td>
<td>0.004</td>
<td>5609</td>
</tr>
<tr>
<td>10</td>
<td>0.006</td>
<td>0.006</td>
<td>4002</td>
</tr>
<tr>
<td>11</td>
<td>0.005</td>
<td>0.005</td>
<td>5786</td>
</tr>
<tr>
<td>12</td>
<td>0.006</td>
<td>0.006</td>
<td>15244</td>
</tr>
</tbody>
</table>

|-- denotes timeout (six hours).

Table 2: Mean time to trigger Magma bugs for each directed fuzzer.

<table>
<thead>
<tr>
<th>Bag</th>
<th>AFLGo</th>
<th>DSFuzz</th>
<th>ParmeSan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time(s)</td>
<td>p-Val</td>
<td>Time(s)</td>
</tr>
<tr>
<td>PNG005</td>
<td>0.005</td>
<td>150</td>
<td>0.006</td>
</tr>
<tr>
<td>PNG006</td>
<td>0.016</td>
<td>136</td>
<td>0.005</td>
</tr>
<tr>
<td>TIF003</td>
<td>0.002</td>
<td>14957</td>
<td>0.002</td>
</tr>
<tr>
<td>TIF006</td>
<td>0.006</td>
<td>15256</td>
<td>0.006</td>
</tr>
<tr>
<td>TIF007</td>
<td>0.006</td>
<td>3821</td>
<td>0.006</td>
</tr>
<tr>
<td>TIF012</td>
<td>0.019</td>
<td>14043</td>
<td>0.006</td>
</tr>
<tr>
<td>SSL017</td>
<td>0.005</td>
<td>1460</td>
<td>0.004</td>
</tr>
<tr>
<td>PDF018</td>
<td>0.006</td>
<td>1923</td>
<td>0.008</td>
</tr>
<tr>
<td>SSL003</td>
<td>0.003</td>
<td>1135</td>
<td>0.006</td>
</tr>
<tr>
<td>SSL009</td>
<td>0.005</td>
<td>19410</td>
<td>0.006</td>
</tr>
</tbody>
</table>

|-- denotes timeout (six hours).

Table 3: Real-world bugs found by DSFuzz.

<table>
<thead>
<tr>
<th>Project</th>
<th>Version</th>
<th>Bugs</th>
<th>Bag Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>libjpeg-turbo</td>
<td>2.0.85a</td>
<td>2</td>
<td>buffer overflow</td>
</tr>
<tr>
<td>libpng</td>
<td>b7ea74c</td>
<td>3</td>
<td>memory leak, assertion error</td>
</tr>
<tr>
<td>libtiff</td>
<td>55184b1</td>
<td>2</td>
<td>integer overflow, assertion error</td>
</tr>
<tr>
<td>libxml2</td>
<td>2.7.5</td>
<td>1</td>
<td>memory leak</td>
</tr>
<tr>
<td>poppler</td>
<td>1.4.6a</td>
<td>1</td>
<td>buffer overflow</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

5.3.3 New Bugs. This section explores whether DSFuzz can detect unknown bugs in real-world programs. We applied a timeout limit of 24 hours and reran DSFuzz for the 19 programs in the dataset. This experiment used the latest versions of these programs. Nine bugs were detected across five projects. The detailed results are shown in Table 3. To deduplicate the bugs, we first used AFL-CMin on the reported crashes, then compared the call stack, and finally performed manual verification. In addition, we ran other tools for 24 hours and found that only one assertion error in libpng can be reproduced by ParmeSan; the other eight bugs could not be found by any other tool, including general fuzzers in §5.4. We responsibly disclosed the newly detected bugs to the relevant developers; six have been confirmed and four have been fixed so far.

The detection of new bugs confirms our hypothesis that long-lasting bugs may reside in deep code locations that are hard to test. For example, the buggy memory allocation in Listing 4 was introduced in version 1.2.1 in 2001 and remained for over 20 years until it was fixed in September 2022.

Before reaching the buggy location, the program has to pass a series of conditionals containing a branch that leads to return. Without proper direction, the fuzzer has a high chance of spending a lot of time without finding the bug.

Listing 4: A simplified real-world bug example.

Without proper direction, the fuzzer has a high chance of spending energy on exploring those return branches and would not reach the deep buggy location in a limited time budget. Even for directed greybox fuzzers, some constraints are hard to satisfy as they require the existence of variable setting operations that are not reached in the current control flow. In particular, the prior three conditionals that check the value of png_ptr->mode and info_ptr->valid cannot be altered easily. Simple input byte mutations cannot directly update the value of these variables. Changes can only be made by code that processes the prior data blocks. To successfully solve these constraints, the input should contain an IHDR data block before the tRNS data block and should not contain an IDAT data block before it. DSFuzz can generate such data blocks using its special design to satisfy indirect control dependencies.
This example also demonstrates the effectiveness of our micro directed fuzzing strategy for reaching deep states progressively. In particular, this bug is nested in a deep code location with seven dependent states. We present the progress for reaching these dependent states for each directed fuzzers in Figure 7. As the diagram illustrates, AFLGo and ParmeSan could reach some dependent states at an early stage, but they had difficulty reaching those that had indirect control dependencies. Thus, their dependent state coverages increased after 3.8 and 2.5 hours, respectively, but could not be improved further. DSFuzz, however, gradually increased its dependent state coverage until it reached the deep code location after 7.9 hours.

5.4 Component-wise Analysis

We aim to evaluate our contributions in identifying deep targets, exploring state transition paths toward these targets, and mutating inputs to trigger transitions. Since only DSFuzz addresses these challenges, we conducted component-wise analyses to demonstrate its effectiveness. As a first step, we tested whether DSFuzz can detect general bugs and compared it with state-of-the-art general fuzzers. To do so, we set a random unexplored branch as the target of each micro directed fuzzing campaign. Next, we used the 12 deep bugs that DSFuzz triggered in Table 1 as the test cases, and collected how many bugs it could still trigger without the transition path exploration and input range identification components. We present the detailed results in Table 5.

General Bug Detection. The unique feature of DSFuzz is its special design for satisfying indirect control dependencies. Deep states must contain certain hard-to-satisfy indirect control dependencies, but other hard-to-reach blocks may also contain some (probably fewer) and DSFuzz could help satisfy them to reach those blocks. Therefore, we developed DSFuzz\textsubscript{und}, the undirected mode of DSFuzz, to test its ability of general bug detection. DSFuzz\textsubscript{und} targets randomly one unexplored branch condition for each micro directed fuzzing campaign. We compare DSFuzz\textsubscript{und} with a number of different general fuzzers: 1) AFL [45], a classic mutation-based greybox fuzzer; 2) AFLSmart [37], a greybox fuzzer with input-structure awareness; 3) Mopt [29], an AFL-based fuzzer with optimized mutation scheduling; 4) Angora [12], a fuzzer with taint propagation analysis; and 5) REDQUEEN, a fuzzer that tries to solve checksums and magic bytes. We chose them as they are state-of-the-art tools related to the optimizations in DSFuzz. We are aware of recent related works in fuzzing with taint inference [19, 28], but do not include them in our comparison as these tools are not available at the time of writing. We ran each tool for 24 hours with five repetitions.

The detailed results are presented in Table 4. We evaluate fuzzers using the mean edge coverage and the number of detected bugs.

We also present one mean p-value for each compared tool in the table. In general, we found that DSFuzz performed the best in 9 out of the 19 cases, especially in the four projects that contained many indirect control dependencies, including lcms, libjpeg, libpng, and poppler. In them, DSFuzz outperformed the second best tool by 5.3%, 2.3%, 6.6%, and 2.1%, respectively. In these cases, DSFuzz did not mutate combinations of data blocks that would not result in new coverage. For the proj4 and openssl cases, DSFuzz performed the best as they contained constraints that can only be resolved by our dynamic taint analysis. There were four cases, i.e., json, vorbis,woff2, and zlib, for which several tools could achieve a similar average coverage. These cases did not have complex roadblocks: a simple random mutation can satisfy most of the constraints. AFLSmart outperformed all the other tools in five cases, for which it utilized the input format information that was too complex to be learned by other tools. REDQUEEN outperformed all the other tools in four cases that included a lot of checksums and magic bytes. Although DSFuzz could produce some of the magic bytes correctly through its value exploration strategies (§3.5.3), it was inefficient due to its reliance on dynamic taint analysis, which took more time than the mutation strategy used in REDQUEEN. DSFuzz also found the most number of bugs, including one in libxml2 that other tools cannot find.

Transition Path Exploration. We developed DSFuzz\textsubscript{rand}, which is a version of DSFuzz that does not order the potential valid transition paths according to the strategies in §3.4.2. Instead, it randomly chooses one of the potential paths. We observed that three bugs
We found that took 132% more time on average to reach them, suggesting with complex computations) as solving them is not our primary which was difficult to mutate without the information about the ex-
known to reach deep code locations by improving the quality of generated inputs. One
In the remaining eight bugs, the complex constraints required a particular order of data blocks, which was difficult to mutate without the information about the explored data blocks. Even for the four bugs that it triggered, DSFuzz \textit{byte} took 132% more time on average to reach them, suggesting that our input range identification technique also helped satisfy some simple constraints.

6 LIMITATIONS

Taint propagation in a complex program with long paths might be time-consuming, even though we have attempted to limit the number of calls through progressive fuzzing. The problem can be further alleviated by monitoring only a limited number of new branches for taint access. Our implementation fails to satisfy some constraints (magic bytes with complex computations) as solving them is not our primary objective. If needed, DSFuzz can skip these constraints in order to save fuzzing resources, or combine other tools, such as symbolic execution, to support them. Currently, our tool does not support the analysis of binaries. Nevertheless, our solution still applies when we can get their bitcode from reassembly.

7 RELATED WORK

Researchers have proposed various techniques for exploring hard-to-reach code locations.

Directed Greybox Fuzzing. A large number of works aim to reach deep code locations by only spending fuzzing energy on deep targets. AFLGo [10] is the first to use directed greybox fuzzing. Ankou [30] leverages distance-based fitness function, dynamic PCA, and adaptive seed pool update to assist directed fuzzing. Ijon [7] explores deep state spaces via human-in-the-loop annotation. ParmeSan [34] locates targets by sanitizers and solves path constraints by taint tracking. CAFL [25] conducts mutations toward a sequence of constraints rather than a set of target sites. DSFuzz statically locates a number of deep locations and applies a distance calculator for fuzzing toward them.

Meaningful Input Generation. People also try to reach deep code locations by improving the quality of generated inputs. One