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ABSTRACT

JavaScript is widely used for implementing client-side web appli-

cations, and it is common to include JavaScript code from many

different hosts. However, in a web browser, all the scripts loaded

in the same frame share a single global namespace. As a result, a

script may read or even overwrite the global objects or functions in

other scripts, causing unexpected behaviors. For example, a script

can redefine a function in a different script as an object, so that any

call of that function would cause an exception at run time.

We systematically investigate the client-side JavaScript code

integrity problem caused by JavaScript global identifier conflicts

in this paper. We developed a browser-based analysis framework,

JSObserver, to collect and analyze the write operations to global

memory locations by JavaScript code. We identified three categories

of conflicts using JSObserver on the Alexa top 100K websites, and

detected 145,918 conflicts on 31,615 websites.

We reveal that JavaScript global identifier conflicts are prevalent

and could cause behavior deviation at run time. In particular, we

discovered that 1,611 redefined functions were called after being

overwritten, and many scripts modified the value of cookies or

redefined cookie-related functions. Our research demonstrated that

JavaScript global identifier conflict is an emerging threat to both

the web users and the integrity of web applications.

CCS CONCEPTS

· Software and its engineering→ Software safety; · Security

and privacy → Browser security.
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1 INTRODUCTION

It is very common to separate code of different functionalities into

multiple external JavaScript files and include the scripts from many

different hosts in developing web applications. This allows a devel-

oper to reuse the code in other third-party programming libraries

and to easily build an application rich of functionalities. For exam-

ple, to include a social plugin like the Facebook Like button, a web

developer needs to include only a remote script from Facebook and

add two <div> tags in her/his web page [7].

While enhancing the functionality of an application, the included

third-party scripts may cause unexpected behavior to the devel-

oper’s own code. In JavaScript and many other programming lan-

guages, developers use an identifier to refer to a value/object or a

function in memory. In the client-side JavaScript runtime environ-

ment, i.e., the web browser, there exists a single global namespace

for all identifiers in scripts loaded in the same frame. Any variable

or function defined in a script’s own main scope is available to any

other script executing in the same frame. This means that a script

can not only directly call global functions and read the values of

global variables in another script, but also modify its global ob-

jects or functions. Since JavaScript is a weakly typed programming

language, a script can even change the type of a global variable/-

function without immediately causing any exceptions or errors.

Such kind of global identifier conflicts can compromise the integrity

of the developer’s own code, causing it to take a different branch,

return an incorrect value, or simply crash, etc.

Global identifier conflicts are difficult to prevent. On the one

hand, to avoid identifier conflicts, a developer needs to carefully

examine the source code before she/he includes a third-party script,

which could be very difficult because of code minimization or ob-

fuscation. She/he might have to change all conflicting locations in

her/his own code to have a conflicting script included unless an

alternative non-conflicting script can be used. On the other hand,

if no conflict is found, a script might still cause a conflict in the

future. The third-party code is hosted on a remote server and can

be modified by the script provider at any time without notifications.

The developer can enforce integrity check of a script, for example,

by using Subresource Integrity [21] or the sha256- option of the

Content-Security Policy (CSP) [34]. The application, however, can

be broken whenever the remote code needs to be updated (e.g., due

to a security advice). Further, a script can dynamically include any

other scripts, which may also contain global identifiers that conflict

with the existing ones. This could be prohibited by configuring a

CSP policy. However, CSP had a limited adoption rate [5, 6] because

many websites require to dynamically load additional scripts from

arbitrary sources. For example, millions of websites make profits by
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including advertising scripts, which can include additional scripts

from other partners in the real-time auction process.

Prior research have studied potential global identifier conflicts

between two JavaScript libraries. In [25], the authors generated

synthetic clients to test if two libraries would cause different behav-

iors when they are loaded under different settings. Such clients can

test only the simple operations of the libraries whereas the code in

real applications could be much more complex. The result cannot

reflect the conflicts in real applications, which may include more

than two libraries. The applications may even include custom code

that is dynamically loaded from both the developers’ own hosts and

the third-party hosts. Finally, the analysis is based on a selective

record-replay dynamic analysis framework [33] that instruments

selected source code. Thus, the tool does not cover any additional

code that is dynamically loaded.

In this paper, we aim to study JavaScript global identifier conflicts

in real websites. We face several challenges. First, most JavaScript

code is asynchronously executed as callback. It is difficult to reason

about which definition is valid when a variable is used. Second,

JavaScript is a weakly typed and dynamic programming language.

Static analysis is likely to overestimate the conflicts, resulting in

many false positives. Third, not all code in a real website is available

statically. A site can load multiple external scripts from arbitrary

sources dynamically at run time. Fourth, JavaScript supports object-

oriented programming features. A write to a global object can be

performed within the method of that object itself.

To overcome the above challenges, we develop JSObserver, a

browser-based dynamic analysis framework that monitors and logs

write operations to JavaScript global memory locations (i.e., vari-

ables and functions). We perform just-in-time code instrumentation

by modifying the Chrome V8 JavaScript engine. The instrumenta-

tion allows us to cover all code that is executed at run time. We

dynamically insert the monitoring code when a script performs

an operation related to memory write. Specifically, we maintain a

shadow variable to perform dynamic type inference. We log a func-

tion definition when a function is first parsed in V8 or a function

literal is assigned to a variable. We log each memory write opera-

tion, including an assignment, an object definition/creation, and a

function return. Since the objects in JavaScript are copied/passed by

reference instead of by value, we also implement a shadow and im-

mutable identifier property that uniquely identifies each JavaScript

object in memory. This makes alias analysis much simpler and ac-

curate. With the logs, we detect three kinds of conflictsÐvariable

value conflict, function definition conflict, and variable type con-

flict. Although our analysis is not sound because we do not test all

possible execution paths, it is precise as every conflict we detect

must have happened.

We implemented a prototype of JSObserver based on the Chrom-

ium browser version 71, and used the prototype to analyze the main

pages of the Alexa top 100K websites. We show that this class of

code integrity problem is very commonÐoverall, we found 36,813

function definition conflicts on 9,566 websites, 27,893 variable type

conflicts on 3,501 websites and 81,212 variable value conflicts on

27,199 websites. The conflicts were mainly caused by the use of

short/simple identifiers and duplicate inclusion of scripts. In partic-

ular, because of conflicts, cookies on 109 websites were modified

and many cookie-related functions were redefined. Our research

demonstrates the strong need to isolate JavaScript code from differ-

ent organizations into separate namespaces.

To the best of our knowledge, we are the first to systematically

measure and analyze JavaScript global identifier conflicts on a large

scale. In summary, we make the following contributions.

• We develop JSObserver, a browser-based dynamic analysis

framework for studying JavaScript global identifier conflicts.

• We perform an empirical study on Alexa top 100K websites

and make our data publicly available.

• We characterize the detected conflicts in real web applica-

tions and discuss the security implications.

The rest of this paper is organized as follows. We define our

research problem in ğ2. We describe the design of JSObserver and

our methodology in ğ3. In ğ4, we characterize the global identifier

conflicts and demonstrate several interesting cases we detected. We

discuss the limitations of our study and future work in ğ5. Finally,

we discuss related work in ğ6 and conclude in ğ7.

2 PROBLEM STATEMENT

In this section, we first formally define the three types of conflicts

that we study, then demonstrate the scope of our research, and

finally discuss our research challenges.

2.1 Definitions

We consider conflicts caused by writes by multiple scripts to the

same global memory location (i.e., a variable or a function) in

JavaScript. A global memory location can be accessed through

one or more global identifiers in any scope in JavaScript. All mem-

ory locations are properties of some object. They can be accessed

through the dot notation or the bracket notation. For example, both

window.x["y"] and window.x.y point to a property named as "y"

of the object window.x, which is a property named as "x" of the

global object window. The identifier window is often omitted, e.g.,

as in x["y"]. Global functions are also considered as properties

(or more precisely, methods) of the object window. We define three

categories of JavaScript global identifier conflicts next.

Value Conflicts. Value conflicts happen when two or more scripts

write to the same global variable with different values in the same

type. For example, a script S1 may assign 1 to the variable state,

which is then overwritten by another script S2 to 0. The control flow

of S1 can be changed if it later uses this variable in a conditional

statement in a callback function. Note that the writes to the same

property of a global object variable, e.g., loc.x, with different values

in the same type are also considered as value conflicts.

Function Definition Conflicts. This type of conflicts occurs if

two or more scripts define a global function with the same name.

The runtime behavior is normally undetermined and depends on

the order of the function definitions. Normally, the function defined

in a script that is most recently loaded is selected by the browser.

Type Conflicts. A type conflict occurs when the same global

location, i.e., a variable or a function, is written by multiple scripts

with values of different types. For example, f was defined by script

S1 as a global function. Script S2 may assign a string to f, which

would surprise S1 and cause it to crash when it calls f() to handle

some user actions. Changing the type of a property of a global object

variable by a different script also constitutes to a type conflict.
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2.2 Scope of Research

We focus on studying a form of JavaScript code integrity problem

caused by global identifier conflicts. The conflicts can be caused by

scripts from either a different organization, i.e., the cross-organization

conflicts, or the same organization, i.e., the intra-organization con-

flicts. We study the following three kinds of cross-organization

conflicts: 1) a third-party script overwrites a global variable/func-

tion defined by a first-party script; 2) a first-party script overwrites

a global variable/function defined by a third-party script; and 3) a

third-party organization’s script conflicts with another third-party

organization’s script. Although a web developer may also write

code that causes any of the three types of conflicts defined in ğ2.1,

we think this is probably the design choice of the developer. There-

fore, we do not report conflicts occurred within the same script.

In our research, an organization is recognized by the domain

name, excluding the top level domain (TLD), of a script’s source URL.

For example, scripts loaded from www.google.com and adservice.

google.co.uk belong to the same organization because their domain

names are both google. We acknowledge that this is not the best

way to detect all domain names of a particular organization. For

example, both www.twitch.tv and www.amazon.com are owned

by Amazon; cdn.a.com and www.cdn-a.com may also belong to

the same organization a.com. However, such cases cannot be easily

detected without additional information provided by humans. We

leave it as a future work to improve the method to determine the

relationships of two domain names.

A conflicting script can be either directly included by the web

developer, or indirectly included by another script in the same

web frame. The conflicting script has the default full privilege to

access any content in its embedding frame. We do not consider code

injection attacks like cross-site scripting (XSS), although they are

other forms of threats to the integrity of client-side JavaScript code.

Code injection attacks are actually orthogonal to global identifier

conflicts as a conflicting script already executes in the target frame.

Note that our research goal is not to determine a conflict as

malicious or benign, as many of the conflicts can be caused un-

intentionally. Rather, we aim at detecting the conflicts that can

compromise the integrity of a script and analyzing the potential

security implications.

2.3 Research Challenges

We face the following challenges in detecting the conflicts.

Asynchronous Execution. JavaScript is single-threaded in the

browser. Most scripts are asynchronous, i.e., the execution of multi-

ple scripts can be interleaved with callback functions. Therefore,

static reaching definition analysis is imprecise because a variable de-

fined in the main function can be asynchronously used in a callback

function and asynchronously redefined by another script.

Type Inference. JavaScript is a dynamically-typed and weakly-

typed programming language. An identifier can be used for data of

different types without explicit type conversions. The type check is

performed at run time. Therefore, a purely static analysis approach

is not sufficient to detect variable type conflicts.

Object Support. Objects in JavaScript are supported by its proto-

type mechanism. Except for the primitive types, all other variables

are of the type object. A script can overwrite a part (i.e., a prop-

erty) of an object indirectly by invoking a method of the object. We

need to identify the receiver object when a write operation occurs

within a method instead of a normal function. In particular, this is

a commonly used identifier in JavaScript, and can point to different

objects in different contexts. For example, this points to the global

object window in a normal function scope or in the global scope; it

refers to an object when it is accessed within the scope of a method

of the object. In order to determine the target of a write, we need

to infer precisely which object this points to.

Alias Analysis. All objects in JavaScript are copied/passed by ref-

erence instead of by value. Therefore, the same global location may

be pointed by multiple identifiers in different scripts. For instance, a

global variable X can be modified indirectly by a script that writes to

the property of Y (e.g., Y.property = 1;) if Y is an alias to X. Further,

when passed as an argument to a parameter of a function, a global

object can be modified through the parameter within the function.

In other words, to detect the writes to a global location, we need to

keep track of all identifiers or aliases pointing to the same object.

3 DESIGN AND METHODOLOGY

In this section, we present JSObserver, a browser-based dynamic

analysis framework for detecting JavaScript global identifier con-

flicts at run time. We record each function definition in the V8

parser to detect function definition conflicts (ğ3.1). We perform

just-in-time instrumentation of all JavaScript code that is executed

to cover all writes to a memory location (ğ3.2). The records allow

us to detect conflicting writes by different scripts to the same global

memory locations (ğ3.3).

3.1 Recording Global Function Definitions

The root cause of function definition conflicts is that two or more

scripts can define their functions using the same global identifier

(i.e., function name). Therefore, we need to find all functions that

are defined in each script. A developer can define a global function

in two ways: 1) defining a named function directly in the global

scope, e.g., function f(args){ stmts; }; and 2) assigning a func-

tion literal to a global variable, e.g., window.f = function (args){

stmts; }. Note that a script may assign a function literal with a

non-empty function name to a variable, e.g., var x = function f(

args){ stmts; }. That function name (e.g., f) is an invalid identifier

(i.e., undefined) in JavaScript.

Finding the first type of function definition is not difficult. In

the V8 engine, the parser needs to first parse the JavaScript code

in the global scope before the compiler outputs the target code.

Therefore, JSObserver logs all global functions with a non-empty

name. The log includes a unique ID (e.g., timestamp), the position

of the function definition, an ID of the script, and an ID of the exe-

cution context. The timestamp-like log ID enables us to understand

at each point of time which definition is valid. We can also leverage

it to study variable type conflicts involving a global function. In

particular, we can determine if a function is changed to an object

or if an object is changed to a function.

Finding the second type of function definition requires us to also

monitor writes to global variables. We discuss it next.
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3.2 Recording Writes to Variables

In this section, we describe how JSObserver logs the write opera-

tions to variables. A JavaScript variable can be written in primarily

twoways: 1) directly written by assigning a value to it or by copying

another variable to it; or 2) partially written by assigning a value

or by copying another variable to one of its properties if the vari-

able being written is an object. The value that can be written to a

variable or its properties can be in several categories: 1) a primitive

type value (e.g., a number or a boolean value); 2) an object literal

(e.g., {a:1, b:0}); and 3) an object initialized with a constructor

(e.g., new Person("John", 20)). However, capturing all the writes

to a variable is very challenging.

First, variables in different scopes can use the same identifier

(name).We need to differentiate local variables from global variables

to avoid over estimation. To tell if an identifier v is a global variable

or not, JSObserver checks the scope of the current statement S

where v is used. If the current scope is the global scope, the identifier

in v is global and is directly logged. If the current scope is a function

scope, JSObserver would search the identifier v in the parameter

list and declaration list of the current function. If v is found in

the lists, it is determined as a local name; otherwise JSObserver

continues to search the lists of an outer function scope until either

a match is found or it reaches the global scope. A special situation

is that the current scope is an object scope or a function scope in an

object (i.e., a method) and the identifier points to a property of the

current object, e.g., this.p. This requires us to infer which object

the keyword this points to, which we describe next.

Second, variables of non-primitive types, i.e., objects, are copied

or passed by reference instead of by value in JavaScript. In order

to detect the writes to the same object, we need to identify all the

valid aliases to it. One intuitive approach is to keep track of all the

assignments involving an object or a variable of an object. However,

this approach is error-prone because an object can be passed into

several nested function calls or assigned as a property of another

object. An object variable v can also be assigned to another ob-

ject obj (e.g., v = obj), hence becomes a new alias to obj. Further,

an object can be self-referenced in its methods with the keyword

this, which can potentially point to any object. To solve this chal-

lenge, JSObserver maintains a unique and immutable shadow ID

propertyś __id__ śof each JavaScript object in V8. Whenever an

object is being written, we can identify it with this shadow ID

property, regardless of the JavaScript variable name being used.

To record the type of a variable, we leverage the typeof operator

in JavaScript. However, if its operand is an expression instead of a

simple identifier, the expression would be evaluated again when we

infer the type using it. This would cause some unexpected behavior.

For example, consider the assignment statement arr[i++] = f().

To log the type of the memory write destination, we can use typeof

arr[i++]. This would cause an additional update of the value of

i, such that the type of the wrong memory location is returned.

To avoid this kind of side effects, we introduce a shadow variable

v' for each direct write operation to a variable in our instrumen-

tation. The write is applied to the original variable first, and then

applied to the shadow target in a nested assignment statement.

JSObserver records the type of the write target by specifying the

shadow variable as the operand of typeof.

Table 1: Instrumentation for recording write operations.

1. v = e =⇒ v ′
= v = e

recordW rite(v, v ′
, v ′

, e)

2. v+ = e =⇒ v ′
= v+ = e

recordW rite(v, v ′
, v ′

, e)

3. v1 = v2 = e =⇒ v ′
1 = v1 = v

′
2 = v2 = e

recordW rite(v2, v
′
2, v

′
2, e)

r ecordW rite(v1, v
′
1, v

′
1,

v ′
2 = v2 = e)

4. v .p = e =⇒ v ′
= v

v ′
.p = e

recordW rite(v .p, v ′
, v ′

.p, e)

5. {p1 : e1, =⇒ o′ = {p1 : e
′
1 = e1, p2 : e

′
2 = e2, ... }

p2 : e2, ... } r ecordW rite(o′.p1, o
′
, e′1, e1)

r ecordW rite(o′.p2, o
′
, e′2, e2)

6. new Obj(...){ =⇒ new Obj(...){

this .p = e ; } o′ = this ;

o′.p = e ;

r ecordW rite(this .p, o′, o′.p, e); }

We next discuss in detail the instrumentations that JSObserver

performs for each type of write operations to a memory location: 1)

assignment statements; and 2) object literal and constructor expres-

sions. We summarize the instrumentations in Table 1. When any of

the write operations is executed, JSObserver infers and records the

type of the memory write target v, the value of the target if it is a

primitive type variable, the expressions e in the operation, a unique

log ID, and the IDs of the script and the execution context, using a

custom function recordWrite(v, s, t, e). Inside the function, it

infers the type of the write target v by evaluating typeof t, where

t is a (shadow) variable whose type is identical to that of v. It logs

the shadow ID property s.__id__ where s is an alias to the write

target object. If the target is of a primitive type, the variable t is

passed to s and the function instead logs the value of t. The write

source expression e is also recorded.

3.2.1 Assignment Statements. Assignment statements are the most

direct way that a script can write to a variable. For each direct

write target v in an assignment statement where v is a variable,

JSObserver creates a shadow variable v' for it automatically. In

particular, JSObserver replaces the assignment statement with a

nested assignment statement which writes to both v and v', as the

first rule shown in Table 1. This avoids evaluating an expression

like arr[i++] twice.

For a shorthand operator, e.g., +=, JSObserver also creates a

shadow variable v' for the direct write target v, as the second

rule in Table 1. In case that a nested assignment statement is found,

JSObserverwould visit the abstract syntax tree (AST) of the nested

assignment statement and replace each assignment statement node

individually (rule #3 in Table 1).

We need to also identify an object when it is partially written

through its property. We could again try to leverage the above

shadow variable to get the shadow ID to avoid re-evaluation of
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an expression, as in v' = v.p = e. However, the shadow variable

would be an alias to the source object e being assigned to the

property instead of an alias to the target object v. Further, if the

write source’s type is a primitive type, the shadow variable v'would

be a value copy of it instead of an alias to it.

In such a situation where the write target is a property of an

object variable, e.g., v.p = 1, JSObserver creates a shadow vari-

able v' of the parent object variable v instead of its property v.p. It

then applies the write to the property through the shadow variable

instead of the original variable, e.g., v'.p = 1, to avoid expression

re-evaluation (rule #4 in Table 1). As a result, we are able to iden-

tify property writes to the same object. For example, a method

writes to one property of the owner object through this.p = 1;.

JSObserver will transfer the code into v' = this; v'.p = 1;, and

identify the owner object through the value v'.__id__. One special

case is that the property is also an object. Such a write would not

modify that object represented by the property, which was essen-

tially an alias, but make the property either a new alias to another

object being assigned to it or a primitive type variable. Therefore,

we do not create a separate shadow variable for an object property.

We do check the type of the property (e.g.,typeof v'.p) rather than

that of the shadow object to detect type conflicts.

3.2.2 Object Literal and Constructor Expressions. To detect a write

conflict to a property of a global object, JSObserver needs to record

all writes to it, including the initial definition. A property can be

defined in two ways. First, the property is directly initialized in

an object literal expression, as rule #5 in Table 1. JSObserver cre-

ates a shadow variable o' for the newly created object, and calls

recordWrite to record the write to each property of the object. The

unique object ID would also be logged with the shadow variable

o'. Second, a property p may be defined within the constructor

or a method of an object through the identifier this, as rule #6

in Table 1. In the case of an object constructor, JSObserver also

creates a shadow variable o' for the object inside the constructor.

JSObserver then logs the write to the property this.p and also

the shadow ID of this through o'.

With the help of the unique object shadow ID, we avoid the

burden of tracking the aliases to an object. In our analysis stage,

we are able to search backward in the logs to find all write records

with the same object shadow ID to detect any write conflicts.

3.3 Detecting Conflicts

In this section, we discuss how we leverage the records collected by

JSObserver to detect the three types of global identifier conflicts.

3.3.1 Function Definition Conflicts. The detection of global func-

tion definition conflicts is very straightforward. We simply check

the function definitions in each frame to find if the same global

function had been defined for more than once by different scripts.

However, a global function can also be defined by assigning a

function literal to a global identifier. To detect conflicting function

definitions by function literal writes, we also find assignment logs

where the type of the write target is function, and search the target

identifier, i.e., the function name, in the function definition logs.

3.3.2 Value Conflicts and Type Conflicts. If a global variable is of

a primitive type, it does not have an alias. We will search any other

write records to the same global identifier. If the logged values

in two records are different and the writes are performed by two

different scripts, we report it as a variable value conflict. However,

if in one record the type of the global variable is different, we report

it as a variable type conflict.

If a global variable is an object, a value conflict may happen

in two situations. First, the variable v itself is overwritten with

another variable. This can be easily detected by searching only

the assignment records to the same identifier v. We do not need

to check if one of its aliases is overwritten because that would

effectively invalidate this variable v as an alias. Second, a property

of the object is written. This can be detected by searching the write

records of all the object’s valid aliases with regards to the current

assignment. If the types of the property in two writes are the same,

we report it as a variable value conflict if either the type is object, or

the type is a primitive one but the values are different. Otherwise

if the types differ, we report it as a variable type conflict. Note that

if the conflict is caused by the same script, we do not report it.

Variable and Function Type Conflicts. We find that a special

type of conflict may occur, i.e., a global identifier is used as both

a global function name and a global variable name. We call it as

variable and function type conflicts. For example, f could be defined

by a script as a global function. Another script may assign a primi-

tive type value or an object to f either before or after this function

definition. Similarly, a global variable v of either a primitive type or

an object, may be assigned with a function literal by another script,

as in v = function (){...};. In order to detect this kind of type

conflicts, we need to cross check the function definition logs and

variable write logs. In particular, for each identifier that is defined

as a global variable, we search it in the function definition logs as

well as the variable write logs to determine if it is also ever defined

as a function.

3.4 Implementation

We implemented a prototype of JSObserver based on Chromium

version 71.0.3578.98 using about 4K lines of C++ code. We modified

the V8 parser to record global function definitions. We modified

the V8 bytecode generator to add our instrumentation code for

recording writes to memory locations. The write operation logs

recorded by JSObserver are stored in a string asgLogs, which is

implemented in the WebKit layer as a property of the DOMWindow

class. All the logs are dumped into the file system on the fly in

page load phase. The prototype binaries are available with the DOI:

10.5281/zenodo.3923232. We plan to release the source code of our

prototype implementation publicly.

4 EVALUATION

In this section, we first describe the data collected in our web

crawling (ğ4.1), then characterize the detected global identifier

conflicts by demonstrating what type of conflicts are generated

(ğ4.2) by which scripts (ğ4.3). Further, we provide case studies (ğ4.4)

and analyze the affected websites and possible reasons of conflicts

(ğ4.5). Finally, we measure the performance of JSObserver (ğ4.6).

42



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Mingxue Zhang and Wei Meng

Table 2: Categorization of global identifier conflicts.

Category #Websites #Conflicts %Conflicts

Function Definition 9,566 36,813 25.23
third -> first 715 1,510 1.03
third -> diff_third 311 543 0.37
first -> third 349 704 0.48
third -> same_third 1,283 7,086 4.86
first -> first 6,829 25,580 17.53
unknown 891 1,390 0.95
Variable Type 3,501 27,893 19.12
third -> first 338 556 0.38
third -> diff_third 156 206 0.14
first -> third 288 434 0.30
third -> same_third 434 820 0.56
first -> first 1,881 22,882 15.68
unknown 643 2,995 2.05
Variable Value 27,199 81,212 55.66
third -> first 7,128 8,582 5.88
third -> diff_third 5,302 7,476 5.12
first -> third 2,021 2,493 1.71
third -> same_third 4,270 9,302 6.37
first -> first 11,986 40,248 27.58
unknown 7,980 13,111 8.99

4.1 Dataset and Availability

We crawled data from the main pages of Alexa top 100K websites

using JSObserver in October 2019. For each website, we recorded

the writes to all identifiers and the calls to functions within 120s in

an assignment log file, and stored the definitions of global functions

in a function definition log file. During our experiment, 8,068 (8.07%)

websites did not finish loading within 2 minutes. Excluding those

that timed out or crashed in our data collection process, we success-

fully gathered assignment log files from 79,083 (79.08%) websites

and function definition log files from 80,566 (80.57%) websites.

The collected data is publicly available with the DOI: 10.5281/zen-

odo.3874944.

4.2 Category of Conflicts

In this section, we characterize JavaScript global identifier conflicts

based on the categories that we define in ğ2.1.

4.2.1 Function Definition Conflicts. In total, we detected 36,813

function definition conflicts on 9,566 websites. In particular, there

are 1,065 such cases where a function literal was directly assigned to

an identifier, which was used as a function name by another script.

We consider this as a special type of function definition conflicts.

We then characterize these conflicts based on the class of the

conflicting scripts, i.e., third party or first party. We currently are

not able to determine the class of a dynamically created inline script

because it does not have a source URL. The class is "unknown" for

conflicts involving such inline scripts. Excluding them, wewere able

to categorize 35,423 (96.22%) conflicts. Table 2 lists the breakdown

of these function definition conflicts.

Cross-organization and Intra-organization Conflicts. Over-

all, we detected 2,757 (7.49%) cross-organization function defini-

tion conflicts. In particular, 543 (1.48%) cases were caused by a

third-party organization’s script that redefined functions of other

third-party scripts. We also discovered 1,510 (4.10%) conflicts where

a third-party script modified a function defined by a first-party

script, and 704 (1.91%) cases where first-party scripts overwrote

functions defined by a third-party script. This indicates that scripts

Table 3: Top duplicate functions.

Function #Websites #Conflicts

gtag 450 631
_typeof 37 273
ez_getQueryString 235 241
getCookie 86 184
_classCallCheck 33 156

could break the integrity of other scripts loaded from a different

organization by overwriting the function definitions.

The majority (32,666 or 88.73%) of function redefinitions were

intra-organization conflicts. 25,580 (69.49%) of them were caused

by first-party scripts overwriting other first-party scripts, and the

conflicting definitions were usually similar. We think this is not a

good coding practice.

Conflicts on Browser Internal Objects. Interestingly, we de-

tected 24 function definition conflicts on browser internal objects,

and 3 of them are cross-organization conflicts. For example, a third-

party and a first-party script assigned different function literals

to self.onerror. self is a reserved property of the window object

and points to the current window. The third-party script therefore

redefined the way that runtime errors were handled. These conflicts

obviously broke the integrity of scripts from other organizations.

We also found 21 intra-organization function definition conflicts

on the internal objects. In particular, 16 of them were found on

methods of internal objects. For instance, document.write() and

document.writeln() were modified on 6 and 4 websites, respec-

tively. We believe these were the development choices, as the scripts

were all loaded from the first-party domain. However, exposing

the builtin methods to all scripts is dangerous, because any scripts

could change the default behavior of the embedding websites.

Duplicate FunctionDefinition andDuplicate Script Inclusion.

We identified several conflict cases where the two function defi-

nitions were identical, which we call duplicate function definition.

This might happen when the same script is included for multiple

times. In total, we found 10,151 (27.57%) cases that the conflicting

function definitions were actually identical, and 9,198 (24.99%) such

conflicts were detected between scripts of the same organization.

The other 953 (2.59%) duplicate definitions were probably caused

by including the same libraries hosted by different organizations.

Table 3 lists the top functions of which we detected a duplicate

definition. As can be seen, some commonly used functions (e.g., gtag

() and getCookie()) were repeatedly defined with the same code.

One possible explanation is developers usually would not check if

a script has been loaded before loading it twice. In total, we found

6,230 (16.92%) function definition conflicts caused by duplicate

inclusion of scripts. Duplicate inclusion does not necessarily break

the functionality of the embedding pages, but still could cause

unexpected behaviors, e.g., invoking the same function for multiple

times. Therefore, we still consider this as a bad coding practice.

We do realize that our method to identify duplicate function

definitions is not comprehensive, since a function could be imple-

mented in various ways. For example, a && b = 1 is functionally

equivalent to if(a){b = 1}. However, it is not our main focus to

thoroughly compare the behavior of different functions, which

cannot be easily decided.
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Table 4: Top redefined functions.

Function #Websites #Conflicts

getCookie 128 155
AKSB.done 115 115
AKSB.measure 115 115
AKSB.mark 114 114
_typeof 34 56

Table 5: Categorization of calls to redefined functions.

Category #Calls #Conflicts %Calls

third -> first 72 1,510 4.77
third -> diff_third 16 543 2.95
first -> third 66 704 9.38
third -> same_third 252 7,086 3.56
first -> first 1,091 25,580 4.27
unknown 114 1,390 8.20

Top Redefined Functions. After excluding identical function def-

initions, we obtain the top five functions that were most frequently

redefined by scripts from different organizations, as listed in Ta-

ble 4. Note that the top function is related to cookies. By overwriting

cookie-related functions, a malicious third-party script could ex-

pose a website to security risks, which we will demonstrate later.

Meanwhile, the top functions that are properties of global object

AKSB were all redefined by one third-party script https://ds-aksb-

a.akamaihd.net/aksb.min.js. Further investigation shows that the

first-party definition of these functions contained very simple code,

e.g., writes to an array. The third-party script modified them to

record several important events e.g., domContentLoadedEventEnd.

For these conflicts, we think the first-party developers included

some initial code snippet provided by the Akamai SDKs (e.g., AKSB),

which would update their code at runtime.

Call-after-redefinition. To estimate the impact of the function

definition conflicts, we further searched in our logs to check if the

functions were called after they were redefined by a different script.

Table 5 gives the breakdown of the calls to the redefined functions.

Specifically, we detected 39 cases where third-party defined func-

tions were overwritten by first-party scripts, and were called by the

third-party scripts later. We also found 29 cases where the first-party

scripts called a function that had been overwritten by a third-party

script. In particular, 12 of them were cookie-related functions. One

example was detected on the website http://footdistrict.com/, where

a function createCookie()was firstly defined in a first-party script,

but then overwritten by a third-party script. After that, the function

createCookie() was called by the first party. Such a conflict could

introduce severe security risks, as a malicious third-party script

could manipulate the value of cookies to force a user to use the

attacker’s session.

Summary.We discover that function definition conflicts exist

on over 9K popular websites. 2,757 (7.49%) conflicts were caused

by scripts from different organizations, and 1,611 functions got

called after being redefined by a different script. We found 16

conflicts on browser builtin methods, and some cookie-related

functions were frequently redefined, which could be exploited

to expose the websites and their users to security risks.

4.2.2 Variable Type Conflicts. We detected 27,893 variable type

conflicts across 3,501 websites. The results are presented in Table 2.

Cross-organization Conflicts. As shown in Table 2, 1,196 (4.29%)

variable type conflicts were caused by scripts from different organi-

zations. For example, on the website https://www.default-search.

net/, the variable localeswas originally defined as a string "\&quot

;ar\_AE\&quot...", and a third-party script from 12c719211bdf.

bitsngo.net modified it to an object. Similarly, a third-party script

from xml.adbetnet.com overwrote the variable pos defined by an-

other third-party script from the number 4 to an object.

Meanwhile, we also detected 434 (1.56 %) caseswhere a first-party

script modified the type of a third-party defined variable. For in-

stance, a first-party scriptmodified a variable formerCalledArguments

from false to an object, and that variable was originally defined by

a third-party script from d1lxhc4jvstzrp.cloudfront.net. This shows

that scripts in any class could be affected by variable type conflicts,

which can introduce potential risks because inconsistent types

could cause runtime exceptions and lead to behavior deviation.

Intra-organization Conflicts. Similar to function definition con-

flicts, most (23,702 or 84.97%) of variable type conflicts were caused

by scripts overwriting variables in scripts from the same organiza-

tion. We believe these conflicts could be the design choice of the

developers because the conflicting scripts were loaded from the

same organization’s domains. They could also cause difficult-to-

detect bugs if the developers of conflicting scripts were not aware

of the conflicts.

Variable and Function Type Conflicts. We detected 971 (3.48%)

special type conflicts where a primitive value or an object was

assigned to an identifier before or after the identifier was used as a

global function name. Specifically, 3 of them were directly declared

as a function. For example, the variable isChrome was defined as

true in a first-party script on https://www5.javmost.com/ before a

function was assigned to it. We detected 157 (0.56%) type conflicts

that a function was modified to be a non-function variable. As a

result, any call to them would cause a runtime exception. We also

found one special case on the website http://vbspu.ac.in/, where

a first-party script modified dropdown to an object, after declaring

it as a function itself. Such a conflict caused a TypeError when

dropdown was called later. This could be an implementation error.

Further inspection showed that 106 out of 157 type conflicts

involved identifiers with a length less than 3, e.g., ma, NN, etc. This

suggests that developers should use unique longer and meaningful

names to avoid the type conflicts.

Summary. We detected variable type conflicts on over 3K web-

sites, and 1,196 (4.29%) were caused by scripts of different or-

ganizations. Especially, global functions could be redefined as

non-function variables, which could cause run-time errors when

they are called. These conflicts were mainly caused by scripts

using simple function names, e.g., NN. It indicates that the devel-

opers should choose unique names to avoid the conflicts.

4.2.3 Variable Value Conflicts. We detected 81,212 variable value

conflicts across 27,199 websites. Interestingly, we detected 10,733

(13.22%) cookie-related variable value conflicts, as shown in Table 6.

Cross-organization and Intra-organization Conflicts. We de-

tected 18,551 (22.84%) cross-organization variable value conflicts,

44

https://ds-aksb-a.akamaihd.net/aksb.min.js
https://ds-aksb-a.akamaihd.net/aksb.min.js
http://footdistrict.com/
https://www.default-search.net/
https://www.default-search.net/
12c719211bdf.bitsngo.net
12c719211bdf.bitsngo.net
xml.adbetnet.com
d1lxhc4jvstzrp.cloudfront.net
https://www5.javmost.com/
http://vbspu.ac.in/


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Mingxue Zhang and Wei Meng

Table 6: Cookie value conflicts.

Category
Same Organization Diff Organization

#Conflict #Website #Conflict #Website

Value Modification 97 90 19 19
Addition 2,987 2,217 7,625 5,428
Deletion 5 4 0 0

and 8,582 (10.57%) of them were caused by third-party scripts

overwriting first-party variables. For example, ga.l was modi-

fied from ...437 to ...447 by a third-party script on the web-

site https://filmow.com/. Meanwhile, we found 2,493 (3.07%) cases

where a third-party defined variable was modified by first-party

scripts. We also found 49,550 (61.01%) value conflicts that were

caused by scripts of the same organization, andmost of them (40,248

or 49.56%) were caused by first-party overwriting first-party vari-

ables. We think these are the development choices.

Conflicts on Browser Internal Objects. In total, we found 228

cases that multiple scripts wrote to cookies with the same name. In

particular, 116 conflicts caused existing cookie values to bemodified,

as the conflicting scripts assigned different values to cookies with

the same name, path and domain, and 19 of them were caused by

scripts from different organization. One example is on the website

https://www.betfair.it/, where a third-party script from ie1-sscbf.

cdnppb.net overwrote the value of cookie bfsd from ...39065 to

...41129. In this example, the cookie value was originally defined

by a first-party script. We believe this is a privilege abuse. We also

found 97 cases that cookie values were modified by scripts of the

same organization. Although it shall be legitimate for a first-party

script to modify a cookie, we think third-party scripts shall not

modify cookies which all belong to the first party site.

Moreover, we detected 5 cases that scripts removed an existing

cookie by setting the expire time to a past one. One example was

found on website https://www.proporta.com/, where a third-party

script removed an existing cookie "_gcl_au" that was originally

defined by another third-party script from googletagmanager.com.

We believe the above example is legitimate as Civic Computing

provides a service for cookie compliance under GDPR [4]. However,

removing an existing cookie may usually cause the server-side

program to malfunction.

In addition to document.cookie, we also found 52 variable value

conflicts on other internal object properties, and 7 of them are cross-

organization conflicts. One example was found on website http://

popcornnowis.blogspot.com/, where a third-party script overwrote

window.name defined by another third-party script loaded from a

different domain.

Boolean Value Conflicts. We also detected 1,258 boolean value

conflicts on global identifiers, which were used to control the pro-

gram behavior. For instance, on website https://olxliban.com, a

first-party script defined a variable _adblock as true, then a third-

party script https://olxbstatic-a.akamaihd.net/.../advertising.js?...

modified it to false. This variable was used to represent the ex-

istence of an ad blocker. In the case it is false, an advertising

script from doubleclick.net would be included. However, this can

be abused by other third-party scripts. For example, a script can

always set _adblock to true to prevent the injection of ads from

Google DoubleClick and to inject its own ads instead.

1 window.uiOverlay = function(l) {

2 if (document.readyState in {complete: 1, loaded: 1}) {

3 require(["trjs!overlays/uiOverlay"], function(e) { e.apply(

null, i); })

4 }

5 else {

6 document.addEventListener("DOMContentLoaded", function() {

... uiOverlay.apply(null, e); })

7 }

8 }

Listing 1: Original definition of window.uiOverlay().

It reveals that because of variable value conflicts, the control

flow of JavaScript code and the appearance of the embedding page

could also be influenced. Although HTML elements can be directly

modified using JavaScript, it is much more difficult to reason about

the indirect modification caused by global identifier conflicts.

Summary.We detected 81,212 variable value conflicts on over

27K websites. 116 conflicts caused an existing cookie to be modi-

fied. Also, 27 conflicts were caused by third-party scripts over-

writing internal object properties. We believe they are privilege

abuse. Some first-party defined boolean values were modified

by third-party scripts, resulting in different execution paths of

the first-party program. The findings demonstrate that variable

value conflicts could change program behaviors.

4.3 Conflicting Scripts

We characterize the global identifier conflicts based on the conflict-

ing scripts, with a focus on the cross-organization conflicts.

4.3.1 Function Definition Conflicts. We detected 961 unique scripts

redefining a function of another script from a different organiza-

tion. As shown in Table 7, the top script doczy_full-1570133213.

min.js redefined 125 third-party functions on the website https:

//modeloinicial.com.br/, which included a duplicate script from a

third-party CDN host cdn.plune.com. The situations for other top

scripts were similar. Even though the conflicting function defini-

tions were identical, including the same code for multiple times

could result in undesired effects and should be avoided.

The most prevalent scripts causing function definition conflicts

are listed in Table 8. Similar to the top script aksb.min.js that

we had discussed in ğ4.2, the script containr.js redefined window.

mpfContainr(), whichwas originally a very simple function defined

by the first party. In contrast, the scripts from exoclick.com and

wololo.net contained duplicate definition of functions, which had

been defined by first-party scripts. Further investigation shows that

on some websites (e.g., https://www.stileproject.com), the script

from exoclick.com was indirectly included by other third-party

scripts, and it contained identical code as the script it overwrote.

We think that these conflicting scripts were operated under different

domain names but might actually belong to the same organization,

and the conflicts were caused by unexpected duplicate inclusion.

In contrast, the script from static.tacdn.com indeed changed the

definition of function window.uiOverlay() on 23 websites that all

came from tripadvisor.com. We think static.tacdn.com might be

a CDN host of TripAdvisor. However, as shown in Listing 1 and

Listing 2, the redefined function does not wait until the DOM has

been fully loaded before proceeding. Such a conflict could cause

different behaviors on the embedding page and should be avoided.
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1 window.uiOverlay = function() {

2 require(["overlays/uiOverlay"], function(e) { e.apply(null, t

) });

3 }

Listing 2: Redefinition of window.uiOverlay().

Table 7: Top scripts overwriting global identifiers.

Conflict
Script URL

#Conflict
Category Targets

https://modeloinicial.com.br/js/doczy_full-...min.js 125
Function https://www.tcm.com/js/ads/cnn_adspaces.js 44
Definition https://analytics-eu.clickdimensions.com/forms.js?_=... 41

https://tmui2k8.fs.ml.bac-assets.com/sve/js/v4/ms/Microsoft_4.0_min...js? 31
http://cdn-5.wololo.net/wagic/wp-content/cache/minify/ae569.default... 20
http://www.acolyer.org/ 13

Variable https://www.engineersgarage.com/ 10
Type https://www.massdevice.com/ 10

https://www.asce.org/ 10
https://harpers.org/ 10
http://cr.acecounter.com/Web/AceCounter_AW.js?gc=BH3A414... 44

Variable http://cr.acecounter.com/Web/AceCounter_AW.js?gc=AS4A405... 41
Value http://sas.nsm-corp.com/sa-w.js?gc=... 40

https://www.informationweek.com/Default.asp 16
http://ads.bumq.com/ad_show2.js 12

4.3.2 Variable Type Conflicts. We detected 577 scripts causing

cross-organization type conflicts. The top five scripts are also listed

in Table 7. Four of them are first-party inline scripts that redefined

variables aj_adspot, aj_zone and aj_server, etc., from undefined

to a certain value. These variables were originally defined by the

third-party scripts, and were eventually used to determine the ad-

vertisements to inject. This indicates that by overwriting certain

custom variables, a łmaliciousž script could indirectly control im-

portant DOM elements, e.g., ads, that are shown to the visitors.

The noticeable script https://blogroll/livedoor.net/js/blogroll.js

in Table 8 modified variable blogroll_channel_id from a number

to undefined on 63 websites, after using it as the ID of an injected

<div> element. This reveals that variables could be modified by

other scripts to undefined, causing exceptions when referenced.

4.3.3 Variable Value Conflicts. In total, we detected 7,419 unique

scripts modifying the value of variables defined in scripts of other

organizations. The most commonly included script came from

facebook.net. It was detected to modify the value of fbq.version

from "2.0" to "2.9.4" on 2,541 websites. fbq.version was initially

defined by the first party scripts, and was used to determine the

version of a facebook script included on the embedding websites. In

this case, we believe the first-party developers intentionally allowed

fbevents.js to update the version number.

In addition, three of the top scripts were third-party scripts that

added new cookie values. Similarly, three of the top prevalent scripts

modified the value of cookies on hundreds of websites. For instance,

the script from cr.acecounter.com added a new cookie "ACEFCID",

whose value was used by the first-party website to determine the

source URL of an image on that page. This suggests that cookies

are common write targets of different scripts and it is risky to allow

third-party scripts to set the cookies of a first-party website.

4.4 Case Studies

In this section, we discuss several interesting conflicts detected by

JSObserver to further demonstrate the potential risks.

Overwriting Functions toModify DOMContent. We detected

function definition conflicts that could cause modifications of DOM

elements. For example, on the website https://dre.pt/, the first-party

Table 8: Top prevalent conflicting scripts.

Conflict
Script URL #Website

Category

https://ds-aksb-a.akamaihd.net/aksb.min.js 111
Function https://cdn.mookie1.com/containr.js 47
Definition https://ads.exoclick.com/ads.js 32

https://static.tacdn.com/js3/build/concat/short_lived_global-c-...js 23
https://cdn-gae-ssl-default.akamaized.net/js/isp.v.2.0.1.min.js?v=... 23
https://blogroll.livedoor.net/js/blogroll.js 62

Variable https://ads.exoclick.com/ads.js 38
Type https://s-pt.ppstatic.pl/o/js/osnowa.js?... 22

https://ads.exosrv.com/ads.js 16
http://1.citynews.stgy.ovh/ shared/scripts/3rdp-censor/fab.js 14
https://connect.facebook.net/en_US/fbevents.js 2,541

Variable https://sb.scorecardresearch.com/beacon.js 1,473
Value https://top-fwz1.mail.ru/js/code.js 596

https://ssl.google-analytics.com/ga.js 260
https://secure.quantserve.com/quant.js 243

1 function addHTML() {

2 var html = "...<img ...src=\"https://dre.pt/.../logo-portal.

png\" ...> ";

3 if(isMobile.Android()){

4 html += "<div ...><a href=\"...\" ...></a>Aceder </div>";

5 }

6 else if(isMobile.iOS()) {

7 html += "<div ...><a href=\"...\" ...></a>Aceder </div>";

8 }

9 ... ...

10 document.body.innerHTML += html;

11 }

Listing 3: First-party definition of addHTML() on

https://dre.pt/.

1 function addHTML() {

2 var html = "...<img ...src=\"https://dkq729jo4daj5.cloudfront

.net/.../logo-portal.png\" ...> ";

3 html += "<div ...> <a href=\"\" ...></a> Aceder </div>";

4 ... ...

5 document.body.innerHTML += html;

6 }

Listing 4: Third-party redefinition of addHTML().

definition of addHTML() was overwritten by a third-party script

from cloudfront.net. As shown in Listing 3 and Listing 4, the third-

party script redefined the function to insert a different image and a

different <div> element into the embedding website. We believe

that these conflicts should be avoided because unexpected elements

might be included on the embedding page.

RedefiningCryptographyFunctions. Wealso found caseswhere

critical cryptography functions were defined bymultiple scripts. For

example, the website https://www.clublexus.com/ contained dupli-

cate definitions of several cryptography functions, e.g., b64_hmac_md5

(), binl2b64() and core_hmac_md5(), etc. Our inspection shows

that this website included two scripts that contain identical defini-

tions of these functions. However, a third-party script can modify

core_hmac_md5() to generate fake message authentication code

(MAC) to break data integrity.

Conflicting Adsense Publisher IDs. Interestingly, we detected

on several websites that first-party inline scripts wrote different

Adsense publisher IDs. For example, on the website https://www.ac-

illust.com/, the developer’s scripts wrote two different values ca

-pub-5938... and ca-pub-6219... to the same global identifier

google_ad_client. It is used as a unique identifier of a publisher’s

Adsense account to distribute the advertising revenues. In this

case, we believe that first-party developers may have two different
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Figure 1: Rank distribution of websites containing conflicts.

Adsense accounts. However, a malicious script could steal the adver-

tising revenues by simply replacing the value of google_ad_client

with her/his own publisher ID.

4.5 Affected Websites and Reason of Conflicts

4.5.1 Affected Websites. We divide the affected websites into 1,000

groups according to their ranks and calculate the rank distribution,

which is depicted in Figure 1. As is shown, websites in all groups

were affected by global identifier conflicts. Additionally, the con-

flicts caused by scripts from both first-party and third-party are

uniformly distributed.

In particular, we detected conflicts on some top ranked web-

sites. One of the top affected websites is https://www.amazon.com/.

It included two scripts that assigned different callback functions

to the onevent handler window.onerror using window.onerror =

function(){...}, which would directly replace any existing event

handler [20]. The second script therefore redefined the way how

runtime JavaScript errors were handled on Amazon. Our inspec-

tion shows that the two scripts were both first-party inline scripts,

and the second definition actually calls the original event handler.

We believe that this is an implementation error. The developer

could have used window.addEventListener("error", function()

{...}) to avoid replacing all existing event handlers. Another ex-

ample is http://babytree.com/, whose Alexa ranking was 79. The

value of a global variable a defined by a first-party script was mod-

ified from an object to a string by another first-party script from

the same domain. We consider this as a bad coding practice, which

might result from the use of simple variable names.

Our study indicates that all websites, including the top ranked

ones, are subject to JavaScript global identifier conflicts.

4.5.2 Possible Cause of Conflicts. We derived the distribution of

cross-organization conflicts regarding the length of conflict targets.

As shown in Figure 2, for all categories of conflicts, shorter conflict

targets were much more likely to be overwritten by other scripts. In

particular, 318 (11.53%) function definitions conflicts, 378 (31.61%)

variable type conflicts and 3,103 (16.73%) variable type conflicts

were detected on variables/functions whose names contain no more

than 6 characters. The top redefined identifiers include _tmr, _hsq,

and a, etc. This suggests the use of short and common names is

Figure 2: Conflict distribution regarding conflict targets

length.

Table 9: Slowdown on Page Loading Time.

Round Average (X) Max (X) #Incomplete Loading

1 10.84 192.48 2
2 11.58 194.78 6
3 10.45 213.62 4

one possible cause of global identifier conflicts, and the developers

should assign longer and unique names to avoid the conflicts.

As discussed in ğ4.2 and ğ4.3, duplicate script inclusion is another

cause of function definition conflicts, and is actually not rare (it

caused 16.92% of function definition conflicts). Web developers

should be careful when including scripts, as duplicate inclusions

could cause undesired effects.

4.6 Performance of JSObserver

Wemeasure the slowdown on page loading time to evaluate the per-

formance overhead incurred by JSObserver. Specifically, we used a

Vanilla Chromium browser and the prototype of JSObserver to visit

the Alexa top 100 websites separately, waited for at most 5 minutes

before closing the browser, and calculated the average page loading

time and the average slowdown in three rounds. The experiment

results are shown in Table 9. As shown, JSObserver incurs an av-

erage slowdown of 10.96X, and the maximum slowdown is around

200X on https://www.youtube.com, which included 35 scripts. This

shows that JSObserver incurs lower overhead compared with sim-

ilar tools, e.g., Jalangi [33]. However, we also observed that several

pages did not finish loading within 5 minutes. The reason is we

injected multiple instructions for each simple write to a memory

location. We will further discuss in ğ5.

5 DISCUSSION

We discuss the limitations of our current work, the possible mitiga-

tion of the identifier conflict threat, and our future work.

Overhead and Coverage. JSObserver introduces high perfor-

mance overhead as it injects several instructions for each write

to a memory location. Therefore, many websites could not finish

loading within 2 minutes in our experiment. Our goal was not to

detect all possible conflicts in real time. Instead, we tried to detect

as many as we could. Indeed, we were still able to gather many logs
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generated within the timeout and reveal the global identifier con-

flict problem in the real world. We plan to optimize the performance

of JSObserver to improve the efficiency of data collection.

False Negatives. Our conflict detection algorithm is precise but

not sound. During data collection, we did not trigger any UI event.

Therefore, all the detected conflicts occur during normal page load,

and there might be false negatives when the conflicts can only be

triggered by specific sequence of UI events. Nevertheless, we did

not aim to detect all the potential identifier conflicts. We leave it as

a future work to explore the trigger conditions of conflicts on the

web.

Script Isolation. A script can access and overwrite the global

identifiers in another script due to the fact that all the scripts in-

cluded in the same frame share the same global namespace. This

indicates that the global identifier conflict problem can be solved

by isolating the scripts that write to the same memory location.

Therefore, we can leverage existing browser isolation mechanism

to isolate different JavaScript code in separate execution environ-

ments. However, this may introduce a significantly high overhead

at run time and break the functionality of code that depends on

each other. We leave it as our future work.

Avoiding Common Identifiers. Our analysis shows that many

scripts used simple or popular identifier names, e.g., i, getCookie,

etc., which is another cause of conflicts. Therefore, the problem

might also be mitigated by ensuring that the same identifier is

not used by multiple scripts. For example, we can statically or

dynamically instrument JavaScript code by appending different

random strings to the identifiers in different scripts. We plan to

implement and evaluate such a mechanism in the future.

6 RELATED WORK

JavaScript Conflict Analysis. Patra et al. [25] proposed Con-

flictJS, an automated approach to analyzing the conflicts between

JavaScript libraries. However, they studied only a limited number of

JavaScript libraries in a synthetic environment. In real world appli-

cations, there could be more than two JavaScript libraries. Further,

ConflictJS is built on top of Jalangi, which is a dynamic JavaScript

analysis framework based on selective record-replay technique [33].

Therefore, they are not able to detect the conflicts in dynamically

loaded code. In contrast, JSObserver is able to detect the conflicts

between any scripts, including those that are dynamically loaded.

Zhang et al. [36] also detected JavaScript identifier conflicts by in-

strumenting the Chromium browser. Nevertheless, they covered

only an incomplete set of JavaScript features.

JavaScript Type Inference. Pradel et al. [26] proposed TypeDevil

to detect identifiers that have inconsistent types. Jensen et al. [15]

proposed a static analysis framework for JavaScript and imple-

mented an analysis prototype on top of [24]. Hackett et al. [11]

presented a hybrid type inference approach for JavaScript based on

points-to analysis. These works focus on inferring JavaScript type

information within a single script. However, our dynamic analysis

framework aims to detect the type inconsistency of global identi-

fiers across different scripts. Meanwhile, there have been several

learning-based approaches to predicting the type for JavaScript

code [12, 19, 28]. They aimed to statically infer about a variable

type and therefore enable the generation of much faster code, which

is orthogonal to our work. In our work, we leverage the JavaScript

built-in type checker to infer the type of a variable at run time.

Cross-domain Script Inclusion. Yue and Wang [35] studied sev-

eral insecure practices regarding JavaScript, including duplicate

inclusion. Ratanaworabhan et al. [27] and Richards et al. [31] an-

alyzed the behavior of popular JavaScript libraries. Richards et

al. [30] focused on the security risks imposed by the use of eval().

Nikiforakis et al. [23] analyzed script inclusions on Alexa top 10K

websites and revealed four vulnerabilities that could be exploited to

attack popular websites. Lauinger et al. [17] showed many websites

included outdated or vulnerable libraries, and popular libraries (e.g.,

jQuery) could be included for multiple times. In this work, we focus

on the global identifier conflicts rather than the trust relationship

between scripts. Except for function definition conflicts that could

result from duplicate inclusions, JSObserver can also detect other

categories of conflicts.

DynamicAnalysis of JavaScript. Many static analysis approaches

(e.g., [1ś3]) fail to reason about the runtime behaviors of JavaScript

code. Therefore, prior works have studied the dynamic analysis of

JavaScript. Gong et al. [10] proposed DLint to dynamically detect

the violations of several coding quality rules at run time. In [8],

the authors combined static and dynamic analysis to detect suspi-

cious JavaScript code, e.g., unusually long functions. In contrast,

our analysis focuses on statement-level conflicts, especially the

conflicting writes to memory locations in different scripts. In [16],

the authors allowed forced execution of JavaScript code to explore

all the possible paths and revealed malicious behaviors. Other anal-

ysis includes data race detection [14, 22, 29], determinacy analy-

sis [32], JavaScript performance profiling [9], concurrency error

detection [13] and crash path computation [18]. These techniques

are orthogonal to JSObserver, which focuses on JavaScript global

identifier conflicts.

7 CONCLUSION

We have investigated a form of JavaScript code integrity problemÐ

the JavaScript global identifier conflict problem on theWeb, with an

analysis framework developed based on the Chromium browser. We

collected data from the main pages of the Alexa top 100K websites

and detected three categories of conflicts. We demonstrated that

many websites were affected by identifier conflicts. In particular,

we detected 145,918 conflicts on 31,615 popular websites. It is even

alarming that third-party scripts could compromise the integrity of

first-party code and cookies because of the privilege of accessing

the same global namespace. Our research shows that JavaScript

global identifier conflict is an emerging threat to both the web users

and the integrity of web applications, and highlights the need to

isolate JavaScript code from different organizations.
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