
SEDiff: Scope-Aware Differential Fuzzing to Test Internal
Function Models in Symbolic Execution

Penghui Li
Chinese University of Hong Kong

Hong Kong SAR, China
phli@cse.cuhk.edu.hk

Wei Meng
Chinese University of Hong Kong

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

Kangjie Lu
University of Minnesota

Minneapolis, USA
kjlu@umn.edu

ABSTRACT

Symbolic execution has become a foundational program analysis
technique. Performing symbolic execution unavoidably encounters
internal functions (e.g., library functions) that provide basic opera-
tions such as string processing. Many symbolic execution engines
construct internal function models that abstract function behav-
iors for scalability and compatibility concerns. Due to the high
complexity of constructing the models, developers intentionally
summarize only partial behaviors of a function, namely modeled
functionalities, in the models. The correctness of the internal func-
tion models is critical because it would impact all applications of
symbolic execution, e.g., bug detection and model checking.

A naive solution to testing the correctness of internal function
models is to cross-check whether the behaviors of the models com-
ply with their corresponding original function implementations.
However, such a solution would mostly detect overwhelming in-
consistencies concerning the unmodeled functionalities, which are
out of the scope of models and thus considered false reports. We
argue that a reasonable testing approach should target only the
functionalities that developers intend to model. While being neces-
sary, automatically identifying the modeled functionalities, i.e., the
scope, is a significant challenge.

In this paper, we propose a scope-aware differential testing frame-
work, SEDiff, to tackle this problem. We design a novel algorithm
to automatically map the modeled functionalities to the code in
the original implementations. SEDiff then applies scope-aware
grey-box differential fuzzing to relevant code in the original imple-
mentations. It also equips a new scope-aware input generator and a
tailored bug checker that efficiently and correctly detect erroneous
inconsistencies. We extensively evaluated SEDiff on several pop-
ular real-world symbolic execution engines targeting binary, web
and kernel. Our manual investigation shows that SEDiff precisely
identifies the modeled functionalities and detects 46 new bugs in the
internal function models used in the symbolic execution engines.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Security and privacy→ Software security engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549080

KEYWORDS

Differential Testing; Symbolic Execution; Internal Function Models

ACM Reference Format:

Penghui Li, Wei Meng, and Kangjie Lu. 2022. SEDiff: Scope-Aware Differ-
ential Fuzzing to Test Internal Function Models in Symbolic Execution. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),
November 14–18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3540250.3549080

1 INTRODUCTION

Symbolic execution is a foundational program analysis technique
that symbolically reasons about program behaviors. It has shown
great promise and has been applied to various tasks such as bug
detection [12, 15, 31, 38], vulnerability assessment [9], root cause
analysis [48], etc. For example, recent symbolic execution frame-
works are able to detect vulnerabilities in well-tested software like
OpenJEPG, Chrome and Firefox [12, 38].

Software development often involves internal functions, which
are provided along with the language systems. They include li-
brary functions and built-in functions that offer basic operations
like string processing, arithmetics, bit manipulation, etc. Similar
to normal concrete execution, symbolic execution also requires
understanding the semantics of the internal functions.

The internal functions however incur two important problems
to symbolic execution: scalability and compatibility. First, internal
functions are often frequently-invoked basic functions (e.g., string
processing and arithmetical operations). Our study shows that, in
modern software, around 70% of internal functions are invoked at
least twice and many are called for thousands of times (see §2.1
for more details). Therefore, symbolic execution easily becomes
unscalable if it repeatedly runs them. Second, internal functions are
often implemented in a language (e.g., C) different from the one of
the main programs (e.g., PHP). Existing symbolic execution engines
typically target only the language of the main program and are
unable to handle internal functions in a different language [9, 47].

To solve the aforementioned problems, function modeling is
the go-to approach that has been widely adopted in common sym-
bolic execution tools. Modeling is to abstract the behaviors of the
target function, so the analysis does not have to go through the
internal details repeatedly. Prior works [9, 28, 31, 40, 47] model
the behaviors of internal functions and integrate the models to
the underlying symbolic execution engines. In this work, we refer
to such interpretation of internal functions in symbolic execution
as internal function models [9, 31, 40, 47]. For example, a popular
symbolic execution engine, Angr [40], defines SimProcedure [2]
for modeling.

57

https://doi.org/10.1145/3540250.3549080
https://doi.org/10.1145/3540250.3549080

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Penghui Li, Wei Meng, and Kangjie Lu

The correctness of the internal function models is critical to
symbolic execution and its applications. Incorrect internal func-
tion models could lead to incorrect reasoning of the programs. A
symbolic execution based bug detector would wrongly determine
the path feasibility because of an incorrect internal function model,
thus the results it outputs would be inaccurate and unreliable. Also,
an error in symbolic execution based vulnerability assessment may
miss critical vulnerabilities and delay the patching. Accordingly,
the security analysts have to take excessive time to manually verify
the results or filter out the false reports.

Despite the importance, to the best of our knowledge, testing
internal function models remains an under-explored topic. Past
practices largely rely on user reports to identify and fix bugs in
them [1, 3], which is inefficient. Only a few recent research works
have attempted to automatically test them through differential test-
ing, which compares the behavior of symbolic execution to that
of concrete execution. However, they have several inherent limita-
tions. They focus on testing symbolic execution engines as a whole,
whereas the internal function models are not thoroughly studied.
In particular, Kapus and Cadar [23] checked whether the results of
symbolic execution conform to concrete execution for programs
generated by Csmith [49]. Their method explores more on the di-
versity of overall program syntax. It fails to probe the semantics
of internal functions and their models, and as a result, does not
detect any bugs in the models. To the best of our knowledge, the
most relevant work, XSym [28], leverages an existing regression
test suite to check internal function models in a PHP symbolic
execution engine—Navex [9]. However, its approach is restricted in
both scalability and depth: it requires human efforts to extract the
models and can only test part of the models. Thereby it could not
precisely reveal bugs in internal function models, as we will show
in §5.4.

A fundamental problem with existing differential testing works
is that they do not attempt to specifically target modeled function-
alities that are interpreted in the internal function models. By its
nature, modeling focuses on only the most important functionalities
[31, 40, 47], and chooses to discard or ignore the rest unmodeled
functionalities [2]. As existing works test symbolic execution en-
gines as a whole, they simply report all inconsistencies (including
the ones out of the modeling scope) as bugs. Most of the reported
“bugs” would be false positives. We believe that a reasonable testing
approach should rather focus only on the modeled functionalities.
However, automatically identifying the modeled functionalities (i.e.,
the scope) is challenging, as neither the developer intention nor
the modeling logic is provided. Distinguishing the modeled func-
tionalities from the unmodeled ones requires deep understanding
of their semantics and thus is non-trivial.

In addition to the scope challenge, we identify two other major
challenges in developing a differential testing framework for the
models. First, it is challenging to scalably support diverse repre-
sentations of the models in different symbolic execution engines.
Symbolic execution engines take distinct ways to construct their
internal function models. As a key component, the models closely
coordinate with the rest of the engines. It is thus non-trivial to
distinguish the models from the other symbolic execution com-
ponents, which however is a required first step for inferring the
modeled functionalities. Second, generating workloads to efficiently

detect bugs within the scope is hard. The workloads are expected
to extensively exercise the modeled functionalities without wast-
ing resources on testing other unmodeled functionalities. None of
the existing works has ever attempted to consider the scope for
generating workloads.

In this paper, we design a scope-aware differential testing frame-
work, SEDiff. It incorporates several new techniques to overcome
the above-mentioned challenges. First, we observe that, though
the internal function models are implemented diversely within
the symbolic execution engines, most internal function models
are passed to the SMT solvers (e.g., Z3 [21]) in a uniform format,
SMT-LIB language [11]. We propose minimal-program synthesis for
generating the SMT-LIB expressions of internal function models,
to help us uniformly and accurately extract the internal function
models. Second, we find that every internal function has its original
implementation that realizes all its functionalities, including the
modeled functionalities. We define a program path in the original
implementations of the internal functions as a functionality. We
develop a mechanism that maps the paths in the models to their
original implementations to identify the modeled functionalities
and resolve the scope challenge. To realize the mapping, we de-
velop a new technique to recover the data flows from disordered
SMT-LIB formulas for the models. Third, we leverage the grey-box
fuzzing technique on the original implementations to thoroughly
drive differential testing. We design a new coverage metric and a
feedback mechanism that help generate in-scope workloads. We
also develop a tailored bug checker to accurately label bugs during
testing.

We thoroughly evaluated SEDiff on several state-of-the-art sym-
bolic execution engines (e.g., Angr [40]) that employ internal func-
tion models. We first apply SEDiff to extract models and identify
modeled functionalities. Our manual investigation of the modeled
functionalities it reported reveals that SEDiff can accurately pin-
point modeled functionalities with high precision. We then use
SEDiff to differentially fuzz the models. It successfully detected
46 new bugs in the 298 internal function models. It significantly
outperformed the related work XSym [28] by detecting 33 more
bugs. Our characterization further demonstrates the importance
of identifying modeled functionalities and confirms the benefits of
SEDiff’ awareness of scope. We believe that SEDiff’s techniques
are generic. It has huge potential for other application domains that
have multiple implementations complying with similar specifica-
tions. We open-sourced our prototype implementation to facilitate
future research [8].

In summary, we make the following contributions in this paper.

• First in-depth study. We propose the first comprehensive
study on internal function models, and define several key
concepts of this problem.

• New techniques. We propose SEDiffwithmultiple generic
techniques, including (1) automated and uniform model ex-
traction through SMT-LIB and minimal-program synthe-
sis; (2) automated identification of modeled functionalities
with data-flow recovery in SMT-LIB formulas; and (3) scope-
aware differential fuzzing for modeled functionalities with
new input generation and feedback mechanisms.

58

SEDiff: Scope-Aware Differential Fuzzing to Test Internal Function Models in Symbolic Execution ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

• Numerous new bugs. With SEDiff, we found numerous
new bugs in the internal function models in the state-of-the-
art symbolic execution engines.

2 MOTIVATION AND PROBLEM STATEMENT

2.1 Internal Functions in Symbolic Execution

Following the code-reuse paradigm, programming language sys-
tems contain numerous functions that cover basic operations. They
aim to facilitate the use of the language systems and significantly
improve programming efficiency. In this work, we name the func-
tions that provide basic operations like string processing, arithmetic
and bit manipulation as internal functions [28]. For example, the
C/C++ language systems include a large number of standard library
functions; the PHP system provides numerous built-in functions in
the PHP interpreter implemented using C. As a necessary compo-
nent of the programming language systems, internal functions are
widely adopted and used by developers [35]. In a preliminary study,
wemeasured the use of internal functions.We parsed a popular PHP
application—WordPress and a widely-used C program suite—GNU
CoreUtils,1 and computed the frequency of direct (static) function
invocations in their source code. The results showed that 35.25%
(resp. 43.28%) of function invocations in WordPress (resp. GNU
CoreUtils) were about internal functions.

Symbolic execution simulates the program execution in a sym-
bolic manner and it naturally has to reason about the semantics
and behaviors of internal functions. Two important problems arise
when symbolic execution meets internal functions. The first is the
scalability problem. Internal functions are often frequently invoked
for basic operations such as string processing and arithmetics. Our
preliminary study showed that 68.99% (resp. 75.97%) of internal
functions in WordPress (resp. GNU CoreUtils) appeared at least
twice. In both cases, many internal functions occurred hundreds
to thousands of times, and some internal functions were among
the 5 most frequently invoked functions. For example, WordPress
invoked substr() for 2,211 times, which accounted for 3.17% of
all function calls; GNU CoreUtils called strlen() for 3,148 times,
which represented 3.89% of all function calls. Therefore, symboli-
cally executing those functions repeatedly would significantly slow
down the overall performance of symbolic execution.

Second, symbolic execution would raise compatibility issues
due to the cross-language nature [28, 29]. In particular, internal
functions in a programming language are often implemented in a
different language that is incompatible with the symbolic execution
engine. As a result, a symbolic engine for one language system can
hardly seamlessly analyze the target programs without additional
interpretation of internal functions. For example, all PHP internal
(built-in) functions are implemented in C in the PHP interpreter [5];
a typical PHP symbolic execution engine naturally analyzes the
main language—PHP, while it is also necessary for the engine to
support the internal functions. Interpreting the internal functions,
however, is non-trivial [28, 38].

1We used the latest WordPress v5.92 as of Mar 2022. We failed to configure the latest
GNU CoreUtils and used a relatively old version v8.21. We believe the overall trend
could naturally be ported to the latest version.

2.2 Function Modeling as a Practical Solution

Function modeling, which abstracts the relevant semantics and be-
haviors of a target internal function, is the go-to approach to ad-
dressing the scalability and compatibility issues in common state-
of-the-art symbolic execution engines [9, 31, 40, 47]. In particular,
they construct a model for an internal function only once and sym-
bolic execution can reuse it across the whole analysis phase, thus
resolving the scalability problem [9, 31, 40, 47]; the constructed
model can be seamlessly integrated into underlying symbolic ex-
ecution engines thus tackling the compatibility issue [28]. Many
well-known symbolic execution engines (e.g., Angr [40], Navex [9],
etc.) employ modeling for bug detection and exploitation. In this
work, we refer to such models of internal functions in symbolic
execution as internal function models.

The modeling process requires the domain knowledge of lan-
guage systems and symbolic execution engines, thus is often com-
pleted in a manual manner. Due to the excessive manual efforts
modeling requires, as a practical implementation choice, develop-
ers thus choose to model the most important internal functions. We
indeed observe that the modeled functions are normally among the
most frequently invoked ones. For example, substr() and strlen()
are generally modeled in popular symbolic execution engines such
as Navex and Angr. For the same reason, developers model only the
most important functionalities of a function instead of all function-
alities. We refer to such functionalities in the models as modeled
functionalities in this paper.

2.3 Research Goals

As symbolic execution is a foundational analysis technique, depend-
ing on the applications, incorrect models can lead to many issues,
such as failures to detect vulnerabilities [28, 47], delaying the patch-
ing of critical bugs [46], or introducing regression bugs [34]. Also,
the security analysts have to take excessive time to manually verify
the results or filter out the false reports.

Testing the correctness of the models is thus of great importance.
In this work, we aim to automatically apply differential testing to the
internal function models. We want to identify what functionalities
are included in the models and test if they are modeled correctly.
More importantly, under the progressive evolution of symbolic
execution, we hope to provide a systematic solution for developers
to understand the models, probe any mistakes, and improve the
state-of-the-art symbolic execution engines.

2.4 Research Challenges

We identify several research challenges that motivate us to propose
new techniques.
Supporting diverse representations ofmodels. As the first step,
we need to uniformly extract the models from a given symbolic
execution engine that may target a specific language. Symbolic
execution engines for different language systems have a diverse set
of internal functions, e.g., the PHP built-in functions and the C/C++
standard library functions realize different functionalities. Manual
analysis of the code to pinpoint the models certainly cannot scale
and is costly, especially because symbolic execution engines are
quite complex—implemented with millions of lines of code. The
models in them comprise only a small proportion in the huge code

59

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Penghui Li, Wei Meng, and Kangjie Lu

Differentially
Fuzzing Models

Unmodeled
Functionality

1
2

4

1
2

5
3

4
7

6
- Data-Flow Analysis
- Map Paths

Identifying
Modeled Functionalities

- Minimal Program
- Extract Formulas Fuzzing Loop

Symbolic Execution
Engines

Models

Scope-Guided
Input Generator

Tailored Bug
Checker

Original Implementations

Extracting Models

Modeled
Functionality

Figure 1: The architecture of SEDiff.

base. Besides, as a key component, the models closely coordinate
with other engine components to achieve the overall functionality.
For example, the models can closely co-work with the memory
management component, constraint solving component, etc., which
are out of our research scope [7]. It is hard to distinguish the code
of the models from the rest components especially when the model
code shows little difference from the code of other parts.
Identifying modeled functionalities. As we mentioned ear-
lier, developers would include only selected functionalities of the
functions into the models (i.e., modeled functionalities), and inten-
tionally ignore the rest unmodeled functionalities. From our own
experience and the communications with developers, most devel-
opers do not appreciate or accept reports concerning unmodeled
functionalities because they do not plan to support those functional-
ities in their tools from the very beginning. Apparently, the testing
of the models should focus on only the modeled functionalities.
Therefore, we need to distinguish if the revealed behaviors are re-
lated to the modeled functionalities. It is challenging to identify the
model scopes as it requires a deep comprehension of the semantics
of the models.
Efficiently detecting bugs in modeled functionalities. Differ-
ential testing requires test cases to drive the targets for the testing.
None of the existing work has attempted to generate test cases to
test the internal function models. Blindly generating test cases in
a black-box manner is inefficient. It is hard to design heuristics to
thoroughly exercise the models to achieve high coverage. Besides,
the input generator should be aware of the model scope and con-
struct high-quality inputs to exercise the modeled functionalities.

3 DESIGN OF SEDIFF

In this paper, we design a scope-aware differential testing frame-
work, SEDiff, to facilitate bug detection in internal function mod-
els in symbolic execution. The high-level architecture of SEDiff
is depicted in Figure 1. SEDiff entails overcoming the technical
challenges with several new observations and techniques:
Automated and uniform model extraction. We observe that
regardless of the language of a symbolic execution engine, the mod-
els are passed to an SMT solver at the end in the form of SMT-LIB
language [28]. We thus propose minimal-program synthesis to gen-
erate the SMT-LIB expressions for the models, which greatly helps
us extract the models. We will explain how we extract the mod-
els in the uniform SMT-LIB expressions with minimum program
synthesis §3.1.

1 <?php
2 $arg = $_POST["test"];
3 $ret;
4
5 if(abs($arg) == $ret) {
6 // check point
7 }

Listing 1: A minimal program that invokes an internal function

(model).

Scope identification. By its nature, modeling is to abstract how a
function should behave under different inputs, which are essentially
the different execution instances (i.e., code paths). To this end, we
carefully define the functionalities as distinct program paths in
the original implementations of the internal functions. Therefore,
the task of identifying the model scope is transformed to mapping
what program paths are realized in the models. We first propose
new techniques to recover the data flow from disordered SMT-LIB
formulas for the models. We then perform a data-flow analysis
on both the models and their original implementations to identify
common data paths.
Scope-aware differential fuzzing. We develop a scope-aware
grey-box differential fuzzer to facilitate bug detection in modeled
functionalities. We propose a new coverage metric to particularly
guide exploration towards the identified modeled functionalities
in the original implementations; we also design a tailored bug
checker that can utilize the model scope to distinguish if or not the
inconsistencies are associated with the modeled functionalities.

3.1 Model Extraction with SMT-LIB and

Minimal-Program Synthesis

We extract the models based on a key observation—the uniformity
of SMT-LIB. The SMT-LIB standard is a widely-adopted interna-
tional initiative aiming at facilitating research and development in
Satisfiability Modulo Theories (SMT) [11]. SMT-LIB specifies a gen-
eral language for input formulas that SMT applications work with.
We find that though the models are implemented diversely across
engines, they are finally passed to SMT solvers in the same form
of SMT-LIB expressions, where their operations are interpreted
and captured. Therefore, the SMT-LIB language format enables a
uniform and accurate analysis of diverse models across engines.

The next question is how to know which parts in the SMT-LIB
expressions correspond to internal function models. Our idea is to
minimize the SMT-LIB expressions and exclude those that are irrel-
evant to the models. To this end, we synthesize a minimal program
whose purpose is solely to invoke the internal function models.
This way, we can reliably extract the SMT-LIB expressions for the
models by simply removing the irrelevant invoking expressions.
For example, Listing 1 presents a minimal program that invokes the
PHP built-in function abs(), which calculates the absolute value
of a given argument. The minimal program invokes the internal
function in a conditional statement (line 5). When a symbolic ex-
ecution engine analyzes the minimal program to determine the
path feasibility, it seamlessly interprets the internal function and
calls its model for constraint solving, which is later recognized and
extracted.

SEDiff automatically synthesizes minimal programs from func-
tion signatures. The step is currently assisted with a manual step

60

SEDiff: Scope-Aware Differential Fuzzing to Test Internal Function Models in Symbolic Execution ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

1 (assert (= ret var1))
2 (assert (= var2 (* (-1) arg)))
3 (assert (= var1
4 (ite (> arg 0) (arg)) (var2)
5)
6)

(a) Internal function model.

arg
var1

var2

ret

(b) Data dependencies of variables.

Figure 2: The simplified function model of PHP internal function

abs() and the data dependency diagram of the variables.

where we manually obtain the corresponding function names of the
models from the symbolic execution engines. This is manageable
because the number of modeled functions is usually not large. Au-
tomatically extracting all the modeled internal functions is possible
for one specific symbolic execution engine, but requires a consid-
erable amount of engineering efforts to support multiple engines.
A function signature consists of the parameters and their types.
SEDiff automatically constructs the code to call the internal func-
tion. The synthesized program includes the code of the function
calls, together with the argument preparation code (e.g., lines 2-3 in
Listing 1). Note that the synthesized minimal program is required
to be presented in the target language of the symbolic execution
engine (e.g., PHP for Navex [9]).

To obtain models in the SMT-LIB language representations, we
first install the symbolic execution engine and use it to analyze
the automatically synthesized minimal programs. Today, symbolic
execution engines commonly use SMT solvers such as Z3 [21] and
CVC4 [10]. The solvers provide options to dump the input constraint
formulas. Therefore, we extend the SMT solvers to additionally save
the constraint formulas when the solvers are invoked. As the output
of this phase, the formulas describe the semantics and behaviors
of the internal function models. Figure 2(a) is a simplified function
model for PHP internal function abs() extracted from Navex. The
model in the SMT-LIB language contains an argument (arg), a re-
turn variable (ret) and several intermediate variables (var1 and
var2). It evaluates the value of the argument and accordingly re-
turns the negated value or the original one. In particular, it uses a
ternary operator (i.e., ite) to evaluate if the argument is positive
and returns a value based on the result. It uses the assertion oper-
ator (i.e., assert) to enforce the relation (e.g., equality =) between
operands.

3.2 Identification of Modeled Functionalities

We identify the modeled functionalities automatically from the
extracted models. We observe that a model is the abstraction of
how a function should behave for different inputs. It essentially
represents the execution instances (i.e., code paths) under different
inputs. Therefore, we define a unique code path from the function
entry to a return point in the original implementation of an internal
function as a functionality. Such a definition has two benefits. First,
it is fine-grained enough to capture the modeled functionalities
because it can cover all possible execution instances. Second, the
task of identifying the modeled functionalities is transformed into
mapping the model’s SMT-LIB formulas to the code paths in the
original implementations.

We then propose a path mapping algorithm to identify the code
paths of the functionalities included in the models. The extracted

Table 1: Data-flow representation system.

Constant 𝑐 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 |𝑆𝑡𝑟𝑖𝑛𝑔 |𝐵𝑜𝑜𝑙
Function 𝑓 ∈ F
Expression 𝑒 := 𝑐 |𝑎𝑟𝑔 | 𝑓 (𝑒) |𝑒1 𝑜𝑝 𝑒2 |𝑜𝑝 𝑒1
Argument 𝑎𝑟𝑔 ∈ 𝑒

SMT-LIB formulas mostly describe the model’s behaviors as the
data relationship among variables using basic boolean and arith-
metic operations. Thus a natural way to map the paths is utilizing
the data flow information. A code path processes the function ar-
guments. Because our correctness testing focuses on whether a
model produces correct results in the return value or the function
arguments, the data-flow relationship associated to a path with
arguments can well represent the semantics and behaviors of the
path. We thus refine the definition of functionality as the data-flow
formula of the arguments in the code path. Therefore, our algorithm
tries to map the data flow in a code path of the model to the one
in its original implementation. The mapped data-flow pairs then
indicate the functionalities included in the models. We particularly
consider the data flows from the function arguments to the return
values. The rationale is that the models preserve the semantics of
the internal functions and the same data flow relationships between
arguments and return values remain in the models.

3.2.1 Data-Flow Recovery and Analysis. Our data-flow analysis
takes as inputs the source code of original function implementations
and the extracted models represented in SMT-LIB. It infers the
data-flow relationships between the function arguments and return
values in both the original implementations and the models, and
represents them in the same form. The uniform representation
of the data-flow relationships enables SEDiff to link the original
implementation of a functionality with its counterpart in the model.
Data-flow recovery and analysis on models. Performing data-
flow analysis on the SMT-LIB representations of the models is
non-trivial. To the best of our knowledge, no existing works have
ever attempted that. The SMT-LIB language describes the models
as formulas, which, nonetheless, are disordered and do not con-
tain explicit data flow. The obstacle for the data-flow analysis is
that the uses of variables in the formulas do not convey explicit
data-flow relationships. For example, (assert (= ret var1)) only
implies ret and var1 should hold the same value whereas their data
dependency is unclear.

To solve this problem, we identify the data dependencies among
variables in SMT-LIB formulas to recover the data flow. Our algo-
rithm is based on the fact that data flow can only be propagated
from rvalue to lvalue in assignment statements. lvalue stands for
expressions that can be on the left-hand side of the assignment op-
erator, or that refer to memory locations; rvalue represents all other
expressions that can be on the right-hand side of the assignment
operator. Our algorithm first identifies all assignment operations
in a SMT-LIB formula. It then classifies the operands as lvalue and
rvalue, respectively, and discovers the data dependencies between
lvalue and rvalue.

SMT-LIB language only defines the equality operator (i.e., =),
which can actually imply either the assignment operation, e.g.,

61

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Penghui Li, Wei Meng, and Kangjie Lu

(ret=var1), or the equality operation, e.g., (ret==var1), in the origi-
nal implementations. We use several heuristics to infer the assign-
ment operations and the data dependencies in their operands. First,
there are three categories of variables in the formulas, namely, ar-
guments, return variables and the rest intermediate variables. We
can directly identify from the arguments and return variables by
their symbolic names. The data flow in a path should start from
arguments and end at return variables. For example, the data flows
from arg to ret in Figure 2(a). Second, compound expressions can
only appear in the equality operations or in the rvalues of assign-
ment operations. If an equality operation has only one compound
expression as an operand, we can determine that operand as its
rvalue and the other as its lvalue. Line 2 in Figure 2(a) is such
a case where lvalue is var2 and rvalue is (* (-1) arg). Last, we
conservatively consider that both operands can be either lvalue
or rvalue accordingly for the rest cases. The analysis thus outputs
the data dependencies of variables as shown in Figure 2(b). While
being simple, our experiments in §5.2 demonstrate that it has high
precision of 73.94%.

After identifying the data dependencies, our algorithm chains
the data dependencies to construct the full data flow of the paths.
In particular, it seeks the data origin of rvalue (i.e., arguments) and
walks to lvalue next in each assignment. It explores possible paths
that can reach the return variables from the arguments. At the end of
the analysis, SEDiff represents the return values as formulas of the
function arguments using the form shown in Table 1. The formulas
are later compared to the ones from the original implementations.
As shown in Table 1, the simplest form is an expression e, which can
be either a constant value (c), a function argument (arg), a function
call (f(e)), or an operation above expressions (e1 op e2). Function
arguments and return values can also be described as expressions.
In the example of Figure 2(a), the two possible data-flow formulas
are ret=arg and reg=-arg, respectively.
Data-flow analysis on original implementations. SEDiff also
performs a data-flow analysis on the source code of original func-
tion implementations. It constructs a control-flow graph (CFG) for
a function and walks through the CFG from the function entry to
the end (basically, return statements). It inlines callee functions and
creates a single CFG to gather execution information across func-
tions. Following the common practices [36], we set the maximum
inlined basic blocks and functions to 50 and 32, thereby limiting the
size of intermediate results in our analysis. Similarly, this data-flow
analysis also outputs the return values using exactly the same form
shown in Table 1.

3.2.2 Mapping Paths. SEDiff next maps the data-flow formulas
of the return values to identify the modeled functionalities (code
paths). Though represented in the same form, the two implemen-
tations use distinct intermediate variables and symbols, and sim-
ply comparing the data flow or variables in code paths would not
necessarily work. To reduce the noises from the symbol names
for mapping, SEDiff normalizes the symbol names in the repre-
sentations. For example, an argument is turned into arg𝑖 from its
original identifier. SEDiff then cross-checks the normalized return
value representations regarding arguments, and matches them from
the models to the original implementations. In particular, SEDiff

checks if a return value is identically represented in both imple-
mentations, regardless the symbol names. If a match is found, it
labels the corresponding path as a modeled functionality and the
relevant code on the path as modeled code. In summary, this stage
analyzes the data representations of return values in the coherent
form shown in Table 1, and outputs modeled code locations in the
original implementations.

3.3 Scope-Aware Differential Fuzzing for Models

After identifying modeled functionalities from the previous phase,
SEDiff employs scope-aware differential fuzz testing to detect bugs
in the models. It aims to check the function models’ conformance
to their original implementations.

3.3.1 Scope-Aware Exploration. Given the success of fuzzing, a
natural choice is to use the coverage feedback to guide the ex-
ploration, which requires first instrumenting the testing targets—
models. However, it is hard to design a strategy to instrument the
models and capture their coverage information in the SMT-LIB for-
mulas. It is also difficult to instrument them (which are identified
yet in the inconsistent form of SMT-LIB) in the symbolic execution
engines.

We take an alternative approach to collecting the coverage feed-
back by instrumenting the original implementations. Rather than
directly fuzzing the models, we instead focus on the corresponding
original implementations of the functions. We can naturally uti-
lize existing fuzzing frameworks like AFL [51] and LibFuzzer [32]
with their instrumentation tools to achieve this goal. A problem of
this approach is that the original implementations cover not only
modeled functionalities but also unmodeled ones; the latter is not
our test target. Traditional fuzzers consider all edges between basic
blocks and treat their coverage equally [32, 51]. As a result, they
would try to fairly explore all code and waste much effort on the
unmodeled functionalities.
Scope-aware input generation. Inspired by TortoiseFuzz [44],
we propose a new coverage accounting approach that selects test
cases based on the coverage of modeled functionalities. Our insight
is that, we consider only modeled functionalities in the fuzzing
coverage metric, and exclude the irrelevant unmodeled function-
alities. In this work, we refer to the edges between basic blocks
concerning modeled functionalities as model edges and their asso-
ciated code coverage as model coverage, respectively. We design
SEDiff to exclusively instrument the model edges in the original
implementations, and thus measure only model coverage during
testing. Our input generator prioritizes test cases by the new model
coverage metric and culls the prioritized test cases by the hit count
of model edges.

The input generator explores the input space of the internal
functions. It favors and saves both the inputs (arguments) and the
results of a concrete test case during fuzzing if the test case is
interesting. Specifically, it regards a test case as interesting if the
test case brings new model coverage such as hitting new model
edges or increasing model-edge hit-count. The rationale behind
this is that such situations causing new model coverage are likely
to reach new components in the models as well. The saved fuzzing
results on original implementations are next applied to the models
for differential testing (§3.3.2).

62

SEDiff: Scope-Aware Differential Fuzzing to Test Internal Function Models in Symbolic Execution ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Feedback mechanisms. The fuzzing component employs two
kinds of feedback mechanisms for seed selection and mutation.
The feedback mechanism summarizes the importance of a test
case and decides whether it deserves further exploration and mu-
tation [24, 37]. Basically, our fuzzer tracks the visited code in a
testing trial and uses the feedback from model coverage. It decides
if a test case triggers new model coverage. Additionally, the input
generator allows feedback from the checker to favor certain test
cases. It currently uses the bug checking result—whether a bug is
triggered or not—as the feedback. More energy for the mutation and
exploration is allocated to the test cases with positive feedback. The
feedback allows SEDiff to further lean its fuzzing efforts towards
erroneous locations. The rationale is that a test case triggering a
bug is likely to trigger other bugs near it because erroneous loca-
tions sometimes contain more than one bug. This has been evident
in memory-safety bugs [44].

3.3.2 Differential Fuzzing. In each fuzzing trial of the original im-
plementations, SEDiff simultaneously applies the fuzzing results
to the models for differential testing.
Driver program generation. SEDiff constructs simple driver
programs to help verify whether models comply with concrete
fuzzing trials of original implementations. Suppose an interesting
fuzzing case provides a tuple of ([args], [ret]) for a function
f(), SEDiff prepares a corresponding SMT-LIB formula in the form
of (assert(op f([args]) [ret]))), where op denotes comparison
operators such as =, >, etc. SEDiff then passes the formula with
the extracted model to the SMT solver and queries a satisfiability
solution. The solution is used for the conformance check.
Tailored bug checker. We design a tailored bug checker to facili-
tate compliance checks. A bug checker can naturally be designed
to cross-check the satisfiability solution from the solver and its ex-
pected value, and report any unexpected deviations as bugs. How-
ever, there are two categories of inconsistent behaviors that a bug
checker needs to distinguish: inconsistent behaviors associated
with modeled functionalities and unmodeled ones, respectively. A
model can produce inconsistent results concerning the unmodeled
functionalities as they are not fully supported by the developers.
Such cases, nonetheless, are not our focus in this work and should
be excluded.

Our bug checker probes if the inconsistent behaviors are as-
sociated with modeled functionalities. To do this, we use an in-
strumented version of the original implementation to mark the
code paths of the modeled functionalities. During testing, the bug
checker invokes the instrumented version to monitor whether a
test case triggers the instrumented modeled functionalities and thus
distinguishes the two types of inconsistencies. The checker also
signals the bug checking result as the feedback for input generation
and fuzzing.

4 IMPLEMENTATION

We implemented a prototype of SEDiff currently for models whose
original implementations are written in C/C++. We developed the
data-flow analysis for original implementations as an LLVM pass
above JUXTA [36] with 1K lines of C++ code. We used 2K lines of

Python code to parse the SMT-LIB language and realize its data-
flow analysis. The grey-box fuzzing stage was built above AFL
using around 1K lines of C code. The tailored bug checker was
realized above AFL’s LLVM instrumentation tool using 500 lines of
Python code. The prototype is available with the DOI: 10.5281/zen-
odo.6665380 [8]. The rest of the section describes some important
implementation details.
Instrumenting original implementations. The instrumentation
phase of fuzzing inserts additional instructions in each basic block.
The fuzzer can leverage the instructions to dynamically perceive
which particular basic blocks or edges are visited in a fuzzing trial.
To realize our tailored instrumentation against modeled functional-
ities, we first identify all basic blocks of the modeled functionalities
discovered during the data flow analysis and path mapping steps.
Besides the bitmap for overall coverage, we allocate an additional
shared memory area for the model coverage. We also employ instru-
mentation to realize the bug checker. In particular, given a test case,
we record the execution trace of the original implementations and
check whether it triggers a code path in the modeled functionalities.
Feedback and seed selection. AFL maintains a favored seed
queue and adds test cases triggering new coverage to the queue [44,
51]. We extend AFL by adding test cases that trigger bugs to the
queue according to the checker feedback. In particular, we modified
the save_if_interesting() function of AFL. The function could
perceive if a test case causes positive checker feedback, new model
coverage and new overall coverage. We modified the cull_queue()
function of AFL to perform seed selection. The cull_queue() func-
tion is used to prune the test cases while maintaining the same
amount of edge coverage. We select efficient test cases that cover
all visited model edges using the model coverage information.

5 EVALUATION

This section evaluates SEDiff on various aspects. We aim to answer
the following questions:

• How effective is SEDiff in identifying modeled functionali-
ties?

• Can SEDiff detect bugs in internal function models?
• How do our techniques contribute to SEDiff’s bug detection
capability?

In the rest of this section, we first describe the experimental setup
(§5.1). Then we evaluate the effectiveness of modeled functionality
identification (§5.2) and bug detection (§5.3). Next, we present the
ablation study and comparison (§5.4).

5.1 Experimental Setup

We include diverse state-of-the-art symbolic execution engines that
employ internal function models in our evaluation. Our dataset
selection criteria are to include engines that are (1) implemented
in different language systems, (2) used for diverse application sce-
narios and (3) tested by related works. As our prototype currently
supports only C/C++, we limit the engine selection to those of
which the modeled internal functions are implemented in C/C++.
To this end, we include 4 representative symbolic execution engines
shown in the first column of Table 2. The engines are implemented
in different programming languages such as Python, Java and C++,
and have application targets of binary, web applications and kernel.

63

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Penghui Li, Wei Meng, and Kangjie Lu

We currently do not include some popular symbolic execution en-
gines in our evaluation, either because they are not open-sourced, or
they support internal functions using approaches other than func-
tion modeling [15, 19]. For example, KLEE [15] does not employ
function modeling in analyzing the LLVM IR of C/C++ programs,
because the relevant internal functions (e.g., library functions) are
also implemented in C/C++ and can be compiled into LLVM IR for
analysis. Nevertheless, we believe the high diversity of our dataset
allows us to thoroughly evaluate the effectiveness and scalability
of SEDiff.

We download the source code of each engine from its official
website and configure it with the default settings in our experiments.
We first manually identify the function names and signatures of
the models from the engines for minimal program synthesis. As
SEDiff relies on the original implementations of the models for its
analysis, we also find the original implementations of each model.
The original implementations can be found from different sources
such as GNU C library [4], PHP interpreter [5], etc. The experi-
ments were conducted on a server running Debian GNU/Linux 9.13
(stretch) with four 24-core Intel Xeon CPUs and 512GB RAM, and
a desktop computer running Debian GNU/Linux 10 (buster) with a
4-core Intel Xeon CPU and 16GB RAM.

5.2 Identification of Modeled Functionalities

We use SEDiff to extract the model and perform data-flow analysis.
Here we evaluate its efficacy in identifying modeled functionalities.

5.2.1 Identification Results. Table 2 presents the results of our mod-
eled functionality identification phase. In general, not all internal
functions and functionalities are modeled in practice. Our dataset
in total contains 298 internal function models and 37,424 function-
alities, out of which 15,784 (42.18%) were identified by SEDiff as
modeled ones. This is consistent with our previous claim in §2.2 and
can be explained by the limited human resources and high require-
ment of domain knowledge. It further indicates the importance
of our functionality identification technique for testing internal
function models.

We further compute the proportion of the modeled functionali-
ties at source code level. Each modeled functionality corresponds
to a code path in the original implementation. Therefore, we find
the relevant basic blocks in the code path, count the number of
basic blocks, and calculate the proportion of the identified modeled
functionalities. We found that the modeled functionalities com-
prised only a small proportion—27.83%—of the code base in the
original implementations. The detailed proportion for each engine
is presented in the 8th column of Table 2.

5.2.2 Precision of Identification. We study if SEDiff can precisely
identify the modeled functionalities, i.e., if it can precisely map
the data flow pairs. We are particularly interested in understand-
ing how many unmodeled functionalities are wrongly identified
as modeled ones. A wrong identification is an incorrect positive
mapping between the data flow in the SMT-LIB formula and the
one in the source code.

We conduct a manual analysis to investigate the results SEDiff
reported. Due to the large number of reported functionalities, con-
firming all of them requires excessive human effort and is infeasible.

Instead, we sample a total of 50 models in the engines according to
the number of models in them. Specifically, we randomly selected
29, 6, 8 and 7 models from the 4 engines, respectively. We believe
such a random sampling approach is sufficient for obtaining some
general statistics about the precision of our technique. For each
sampled model/function, we manually confirm true positives in
the mapped functionality paths by understanding whether each
pair conveys the same functionality. We specifically compare the
semantics and usage by reading the code and descriptions.

The 50models contain in total 1,984 functionalities in the original
implementation. SEDiff identified 752 as modeled functionalities
that were mapped to their original implementations. Among those,
our manual investigation revealed that 556 out of 752 were true
modeled functionalities, resulting in a precision of 556/752 = 73.94%.
Considering the inherent challenge of understanding the modeled
functionalities across diverse representations, we believe that this
number is reasonable for guiding path exploration.

We have investigated the causes of the 196 incorrect mappings.
The main causes can be categorized into three classes. First, the
data flow in some cases could not be precisely reconstructed by
our heuristics due to the lack of semantics in the formulas. Our
conservative approach considers all possible data flow directions in
the assignment statements. As a result, SEDiff mistakenly mapped
several code paths. Such situations account for around 30% of the
incorrect mappings. Second, around 50% of incorrect mappings
were caused by our limited inter-procedural analysis. Our data
flow analysis encounters inter-procedural calls. The model and
its original implementation have different supports of function
calls. We temporally treat all function calls equally and do not
intercept their semantics. As a result, some data flow could not
be captured. Third, our current implementation does not support
complex parameter logic, precise point-to analysis, etc. Such cases
account for 20% of the incorrect mappings.

5.2.3 Performance. SEDiff’s static analysis is highly efficient and
scalable. It statically analyzed all the models in the 4 complex sym-
bolic execution engines within 73 minutes. The analysis time for
each engine in detail is shown in the 9th column of Table 2.

5.3 Bug Detection

We further apply SEDiff to differentially fuzz the internal function
models and detect bugs. Each engine contains multiple internal
function models and we separately fuzz each model for 5 runs, each
with 6 hours.2 This experiment in total took over 9,000 CPU hours.

Due to the fundamentally random nature of fuzzing [25], SEDiff
could report diverse results in different runs even with the same
configurations. Therefore, we aggregate all reported unique bugs
and present the results in Table 3. We do not use the average be-
cause the aggregation allows us to quantitatively analyze the false
positives among the reported bugs. SEDiff reports as a unique bug
if the case exhibits behavior deviations concerning modeled func-
tionalities and triggers a unique execution trace. Overall, SEDiff is
highly effective and reported 46 new bugs in the symbolic execution
engines. Specifically, SEDiff identified 6, 35, 3 and 2 bugs in Angr,

2Though Klees et al. [25] recommended to run the fuzzer for complex programs for 24
hours and 5 runs, our practice shows that 6 hours here are sufficient as we separately
fuzz each model and function.

64

SEDiff: Scope-Aware Differential Fuzzing to Test Internal Function Models in Symbolic Execution ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 2: Experiment results of modeled functionality identification in representative symbolic execution engines. # M. Func. and # Func. mean

the number of modeled functionalities and the total functionalities among all models in an engine. % M. Code means the basic block level code

proportion. Time stands for the static analysis time in minutes.

Engine Impl. Lang. Target # Model # Func. # M. Func % M. Func. % M. Code Time

Angr [40] Python Binary 165 18,518 9,839 53.13% 29.90% 38
Navex [9] Java Web 35 13,021 3,671 28.19% 17.15% 20
KUBO [31] C++ Kernel 52 3,832 1,328 34.66% 25.62% 13

Deadline [47] C++ Kernel 46 2,053 946 46.08% 39.78% 8

Total - - 298 37,424 15,784 42.18% 27.83% 73

Table 3: Bug detection results of SEDiff.

Engine FP TP TP𝑆𝑡𝑟 . TP𝐴𝑟𝑟 . TP𝐴𝑟𝑖𝑡ℎ. TP𝑂𝑡ℎ𝑒𝑟

Angr [40] 2 6 2 2 0 2
Navex [9] 2 35 18 14 1 2
KUBO [31] 0 3 3 0 0 0

Deadline [47] 2 2 1 0 1 0

Total 6 46 24 16 2 4

Navex, KUBO and Deadline, respectively. The bugs span 36 (12.08%)
out of 298 internal function models. This demonstrates that many
internal function models in production symbolic execution engines
are still error-prone.

We observe that the bug detection result varies per engine. In
particular, the state-of-the-art PHP symbolic execution engine—
Navex—has more bugs than enginies targeting binary analysis and
kernel analysis. We suspect that Navex statically translates certain
PHP internal (built-in) functions into SMT formulas and does not
carefully consider the dynamic typing feature of PHP.

The results include a few false positives. Our manual investiga-
tion showed that the false positives caused inconsistent behaviors
that concerned unmodeled functionalities, which were previously
incorrectly identified as modeled ones (§5.2.2). In other words, all
false positives come from the false positives in the static identifi-
cation phase. Differential testing approaches usually have a large
number of false reports, e.g., 33.3% of bugs that R2Z2 [42] reported
were false cases. Nevertheless, as shown in Table 3, the ratio of
false positives to all bugs reported by SEDiff is not high—only 6
out of 52 cases (11.54%).

While these are not vulnerabilities that can be exploited for
attacks, we reported the bugs to the developers of the symbolic
execution engines, which are widely employed for security applica-
tions. At the time of writing, 7 bugs have been acknowledged and
the others are still under review. We will continue working with
the developers to understand and fix the bugs.

5.3.1 Bug Characterization. We present the characterization of the
detected bugs.
Correlation with function types. We classified the bugs by the
types of functions they reside in. In particular, based on the data
type the functions operate on, we categorized them into (1) string
processing functions, (2) array related functions, (3) arithmetic
functions and (4) others. The breakdown statistics can be found in
Table 3. We find models of certain types of functions are especially
buggy. For example, models of string processing functions (e.g.,

Table 4: Bug detection results of SEDiff𝐴𝐹𝐿 , SEDiff𝑁𝐹 and XSym.

Engine SEDiff𝐴𝐹𝐿 SEDiff𝑁𝐹 XSym

TP FP TP FP TP FP

Angr [40] 1 725 4 2 - -
Navex [9] 17 1,235 27 2 2 3
KUBO [31] 2 230 2 0 - -
Deadline [47] 1 98 3 2 - -

Total 21 2,288 36 6 2 3

strip_tags()) and array related functions (e.g., explode()) are the
dominant buggy types compared to the other types. 52.17% and
34.78% of bugs occur in these two types, respectively.
Causes of bugs. The models did wrongly behave over certain
inputs in our testing. Yet it is still hard to conclude the causes
due to the nature of such correctness (logic) bugs. Unlike memory-
safety bugs and crashes that have clear clues of misuses (e.g., use-
after-free vulnerabilities), such correctness bugs are mainly related
to program logic and we cannot confidently and objectively label
particular code locations as incorrect, i.e., the root causes. With
the source code and manual investigation, we currently could only
conclude that 6 bugs were caused by the functionality simplification
that certain checks or conditions were (intentionally) discarded or
ignored in the models. This could also be confirmed in related
descriptions in [28, 47]. We will closely work with the developers
to investigate the bugs.

5.4 Ablation Experiments and Comparison

We design experiments to understand how each technique in
SEDiff contributed to the final bug detection results and compare
it to the related work. We include two SEDiff’s variants together
with a related work into controlled experiments:

• SEDiff𝐴𝐹𝐿 . To understand the benefits of SEDiff’s aware-
ness of scope, we replace SEDiff’s fuzzing component with
a vanilla AFL into SEDiff𝐴𝐹𝐿 , which thus equally explores
all code space. SEDiff𝐴𝐹𝐿 is customized to report any in-
consistencies as bugs regardless in modeled or unmodeled
functionalities.

• SEDiff𝑁𝐹 . SEDiff𝑁𝐹 is a variant of SEDiff that uses only
the basic model coverage feedback but not the feedback from
the bug checker.

• XSym. We include the only relevant work, XSym, into our
evaluation. XSym employs a regression testing suite to test
Navex’s internal function models.

65

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Penghui Li, Wei Meng, and Kangjie Lu

The differential fuzzing framework of SEDiff includes a grey-
box fuzzing component. However, besides SEDiff𝐴𝐹𝐿 , we do not
construct variants with other grey-box fuzzing components. This
is reasonable because SEDiff is a specially designed framework
for differentially fuzzing internal function models whereas other
fuzzers detecting corruptions, etc., are orthogonal in terms of targets.
Besides, some generic techniques proposed in other fuzzers are
complimentary to SEDiff. For example, though not open-sourced,
CollAFL’s [22] path-sensitive approach to eliminating bitmap hash
collision can be integrated to SEDiff and improve SEDiff from
another angle. We believe the controlled experiments by comparing
SEDiff with SEDiff𝐴𝐹𝐿 , SEDiff𝑁𝐹 and XSym are sufficient to
demonstrate the efficacy of SEDiff. We present the experiment
results in Table 4.
Awareness of scope. Compared to SEDiff, SEDiff𝐴𝐹𝐿 is not
scope-aware. After evaluating SEDiff𝐴𝐹𝐿 with the same resource
budget, SEDiff𝐴𝐹𝐿 naively reported 2,309 cases as bugs, which
include a large number of false positives. To filter out them, we
first applied the tailored bug checker of SEDiff on the reports,
which excluded 2,285 cases concerning unmodeled functionalities
from the reported results. We then manually investigated the rest
cases and further removed 3 false positives. This demonstrates the
necessity of our tailored bug checker in detecting bugs associated
with only modeled functionalities.

In total, SEDiff𝐴𝐹𝐿 detected 21 true positives in the models,
whereas SEDiff outperformed it with 25 (108.70%) more bugs. This
is because SEDiff𝐴𝐹𝐿 spent much effort on exploring unmodeled
functionalities. We further characterized the bugs reported by both
and found that SEDiff successfully identified all bugs SEDiff𝐴𝐹𝐿
reported. The results demonstrate that SEDiff’s awareness of scope
significantly improves the testing performance.
Feedback from bug checker. We compare SEDiff to SEDiff𝑁𝐹

to investigate the benefits of the feedback from the bug checker.
The results show that SEDiff𝑁𝐹 detected only 36 bugs—10 fewer
than SEDiff—in the modeled functionalities. The explanation lies
in that the test cases receiving positive feedback from the checker
are prioritized for more mutations and testing. Some erroneous
code locations contain more than one bug. Therefore, by exploring
more in that direction, SEDiff can potentially detect more bugs.
Comparison with regression testing. Since XSym does not
support other engines, we evaluated XSym on only Navex’s internal
function models. XSym identified 2 true positive bugs out of 5
reports spanning 4 models. Note that XSym used a shorter CPU
time to finish the tests. The 2 bugswere also successfully detected by
SEDiff. The inherent limitation of XSym in using only the existing
regression test suite in a black-box manner made it impractical to
find bugs in the models. We further analyzed the 3 false reports of
XSym. These 3 cases caused true program deviations, however, they
concerned only unmodeled functionalities. Therefore, we conclude
that identifying modeled functionalities and the awareness of scope
allowed SEDiff to detect more bugs in Navex’s models.
Code coverage. Besides bug detection, code coverage is another
important measure of the effectiveness of fuzzing. Intuitively, the
more execution paths are covered, the more thoroughly a target
model is tested. We interpret model coverage concerning the mod-
eled functionalities instead of overall code coverage in original

0 1 2 3 4 5 6
0

20

40

60

(a) Angr — Time (hours)

0 1 2 3 4 5 6
0

20

40

60

(b) Navex — Time (hours)

0 1 2 3 4 5 6
0

20

40

60

(c) KUBO — Time (hours)

0 1 2 3 4 5 6
0

20

40

60

(d) Deadline — Time (hours)

SEDiff SEDiffAFL SEDiffNF

Figure 3: Model coverage (percentage %) over time.

implementations because model coverage can better describe the
exploration efficacy in the models. Each engine contains multiple
models. We calculate the average model coverage among all models
for an engine. We depict per engine the model coverage of SEDiff,
SEDiff𝐴𝐹𝐿 and SEDiff𝑁𝐹 over time during testing in Figure 3. We
do not include XSym because its method does not employ fuzzing
and it finishes testing much early. It is not meaningful to depict its
coverage-time diagram.

From Figure 3, we find that SEDiff achieves higher model cov-
erage than its variants in all engines. At the end of the 6-hour pe-
riod, SEDiff ultimately outperforms SEDiff𝐴𝐹𝐿 by 30%, 27%, 15%
and 23% for Angr, Navex, KUBO and Deadline, respectively. The
improvements mainly come from generating in-scope workloads.
Besides, SEDiff outperformed SEDiff𝑁𝐹 in all engines regarding
model coverage. Additionally, Figure 3 shows the increasing trend
of model coverage over time. It suggests that all variants usually
could find a lot of paths at the beginning and then get stuck at some
time. It also indicates that the model coverage in SEDiff constantly
performed better than SEDiff𝐴𝐹𝐿 and SEDiff𝑁𝐹 .

Summary. Our comparison and characterization demonstrate
the benefits of the awareness of scope and bug-checking feedback
in SEDiff. The full-fledged SEDiff thus could outperform its
variants in both bug detection and code coverage. In particular,
many bugs and paths would be missed without the awareness of
scope.The comparisonwith XSym further shows the high efficacy
of our scope-aware differential fuzzing approach in exercising
the models.

6 DISCUSSION

Threat to validity. SEDiff relies on the SMT solver for the model
extraction and testing. Our approach assumes the underlying SMT
solvers can perform correctly during symbolic execution. We be-
lieve this is a valid assumption because the SMT solvers have been
thoroughly tested before releases and bugs in SMT solvers can
rarely be triggered. In our experiments, we do not observe any such
cases. However, we admit that it is still possible that SMT solvers do
not behave correctly, for example, having soundness bugs [33, 45].

66

SEDiff: Scope-Aware Differential Fuzzing to Test Internal Function Models in Symbolic Execution ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Because of that, the results reported by SEDiff could be unreliable.
To mitigate this problem, one approach is to leverage multiple SMT
solvers for testing. The final result would be more reliable if all
solvers give consistent solutions for a case.
Code availability of function implementations. SEDiff cur-
rently requires the source code of original implementations for its
semantic mapping and grey-box fuzzing. For the common usage
of internal functions, most of them can be found directly from
public channels, e.g., official websites. Certain language systems
do not publicize the internal functions in the form of source code
but binary thus SEDiff currently is not capable to analyze them.
We believe the techniques in SEDiff are generic. In the future, we
plan to extend SEDiff to handle such binary forms by utilizing
advanced binary analysis techniques [13, 40].
Soundness and completeness. SEDiff combines both static anal-
ysis and dynamic analysis. It is neither sound nor complete by de-
sign. On the one hand, as mentioned earlier in §5.2, the static analy-
sis of SEDiff is not sound as it could report modeled functionalities
incorrectly. This is caused by its imprecision in reconstructing the
data flow and the complicated parameter logic, etc. On the other
hand, the differential testing part does not produce false positives;
however, the fuzz testing nature means SEDiff is not complete
and can miss bugs. Our primary goal in this work is to design an
automated and scalable framework to test internal function models.
Meanwhile achieving soundness or completeness is challenging.
We will explore this direction in the future.
Portability. A key contribution of SEDiff is applying differential
testing selectively on part of the functionalities via path mapping.
It can be considered a generic mechanism to explore two different
semantically equivalent implementations without domain-specific
knowledge about their internals. Although this work particularly
studies the internal function models, SEDiff is capable to test other
function models as well, e.g., user-defined functions, if the data flow
in them can be constructed and mapped. Besides, SEDiff has huge
potential for other application domains that have multiple imple-
mentations of common functionalities that comply with similar
requirements or specifications. For example, database systems, data
parsers, etc.

7 RELATEDWORK

Testing symbolic execution engines. The correctness of sym-
bolic execution is essential. To date, source code auditing is still the
mainstream approach to testing symbolic execution engines. There
is only a little research on testing symbolic execution engines. Kapus
and Cadar [23] proposed the first study testing symbolic execution
engines through differential testing. They checked the conformance
of symbolic execution against concrete execution. XSym [28] used
the existing PHP regression testing suite to test Navex’s internal
function models. To the best of our knowledge, our work is the first
study especially on testing internal function models in symbolic ex-
ecution engines. Instead of blindly generating test cases, our work
takes advantage of grey-box fuzzing to explore the input space, as-
sisted with new concepts of modeled functionalities, new coverage
guidance and a new bug checker. Rather than internal function
models, some work tested SMT solvers to identify memory issues

and soundness bugs [14, 45, 50]; other relevant works revealed bugs
in static analyzers [20, 26], model checker [52], debugger [27], etc.
Differential testing. In some cases it is difficult to define a testing
oracle without prior knowledge of expected behaviors. Differen-
tial testing addresses this problem by checking the behavior con-
formance among similar implementations. For example, Chen et
al. employed differential fuzzing to find bugs across Java Virtual
Machines [17]. Slutz proposed differential testing for database man-
agement systems [41]. Chen et al. used the asymmetric behaviors
between testing programs to guide the fuzzer towards finding se-
mantic bugs in SSL/TLS implementations [18]. Our work uses the
function behaviors on original implementations as the ground truth,
and differentially tests internal function models.
Fuzz testing. Many researchers have paid great attention to
coverage-guided fuzzing to identify bugs. It has been applied to
many aspects such as kernel [6, 24], binary [30], network proto-
cols [53], etc. For example, CollAFL [22], TortoiseFuzz [44] and
MUZZ [16] proposed new coverage metrics to guide the seed selec-
tion to achieve better code coverage. Static analysis is also useful
in assisting fuzzing. For example, MUZZ [16] used static analysis
to extract suspicious interleaving operations for concurrency bug
detection in multi-threaded programs. Steelix [30] and VUzzer [39]
analyzed magic values, immediate values and strings that could
affect control flow to help input mutation. SEDiff first applies a
static analysis to identify modeled functionalities. Based on the
results, SEDiff employs a new coverage metric to guide the explo-
ration. Besides, some techniques proposed in other fuzzers [22, 43]
that generically improve fuzzing efficiency can complement SEDiff.
Though orthogonal, we plan to explore integrating them to SEDiff
in the future.

8 CONCLUSION

Symbolic execution is a foundational program analysis technique
that typically models internal functions. The correctness of inter-
nal function models is critical as it would affect the broad range
of applications of symbolic execution. In this paper, we proposed
new concepts of modeled functionalities, and showed the impor-
tance of identifying them for bug detection. We designed SEDiff, a
scope-aware differential testing framework. SEDiff employs new
algorithms to automatically identify the modeled functionalities
with the recovery of data flows in SMT-LIB formulas. After that,
SEDiff takes advantage of grey-box fuzzing with a scope-aware in-
put generator and tailored bug checker to efficiently detect bugs. In a
thorough evaluation on several state-of-the-art symbolic execution
engines, SEDiff was able to identify the modeled functionalities
with high precision and found 46 new bugs. The evaluation results
demonstrate that SEDiff is scalable and effective in finding bugs
in internal function models in symbolic execution.

ACKNOWLEDGMENTS

The authors would like to thank our shepherd and the anonymous
reviewers for their helpful suggestions. The work described in
this paper was supported in part by a grant from the Research
Grants Council of the Hong Kong SAR, China (Project No.: CUHK
14210219). Kangjie Lu was supported in part by the NSF awards
CNS-1931208 and CNS-2045478.

67

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Penghui Li, Wei Meng, and Kangjie Lu

REFERENCES

[1] 2018. Angr Pull Request #84. https://github.com/angr/angr/pull/889.
[2] 2021. Angr Document: Simprocedure. https://docs.angr.io/extending-angr/

simprocedures.
[3] 2021. Angr Pull Request #2956. https://github.com/angr/angr/pull/2956.
[4] 2021. The GNU C Library (glibc). https://www.gnu.org/software/libc/.
[5] 2021. The PHP Interpreter. https://github.com/php/php-src.
[6] 2021. Syzkaller is an unsupervised coverage-guided kernel fuzzer. https:

//github.com/google/syzkaller.
[7] 2022. Navex. https://github.com/aalhuz/navex.
[8] 2022. Zenodo Archive of SEDiff. https://doi.org/10.5281/zenodo.6665380.
[9] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.

NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications.
In Proceedings of the 27th USENIX Security Symposium (Security). Baltimore, MD.

[10] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In Pro-
ceedings of the 23rd International Conference on Computer Aided Verification (CAV).
Snowbird, UT.

[11] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. In Hand-
book of Model Checking. Springer.

[12] Fraser Brown, Deian Stefan, and Dawson Engler. 2020. Sys: a Static/Symbolic
Tool for Finding Good Bugs in Good (Browser) Code. In Proceedings of the 29th
USENIX Security Symposium (Security). Boston, MA.

[13] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.
BAP: A binary analysis platform. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification (CAV). Snowbird, UT.

[14] Alexandra Bugariu and Peter Müller. 2020. Automatically Testing String Solvers.
In Proceedings of the 42nd International Conference on Software Engineering (ICSE).
Seoul, Korea.

[15] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). San Diego, CA.

[16] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li,
Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware Grey-box Fuzzing for
Effective Bug Hunting in Multithreaded Programs. In Proceedings of the 29th
USENIX Security Symposium (Security). Boston, MA.

[17] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed Differential Testing of JVM Implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Santa Barbara, CA.

[18] Yuting Chen and Zhendong Su. 2015. Guided Differential Testing of Certificate
Validation in SSL/TLS Implementations. In Proceedings of the 10th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). Bergamo, Italy.

[19] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for In-Vivo Multi-Path Analysis of Software Systems. In Proceedings of
the 16th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Newport Beach, CA.

[20] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr,
Boris Yakobowski, and Xuejun Yang. 2012. Testing Static Analyzers with Ran-
domly Generated Programs. In Proceedings of the 4th NASA Formal Methods
Symposium (NFM 2012). Berlin, Heidelberg.

[21] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems.

[22] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In Proceedings of the 39th
IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA.

[23] Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Execu-
tion Engines via Program Generation and Differential Testing. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE). Urbana, IL.

[24] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding Semantic Bugs in File Systems with an Extensible Fuzzing
Framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP). Ontario, Canada.

[25] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS). Toronto, Canada.

[26] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially
Testing Soundness and Precision of Program Analyzers. In Proceedings of the
28th International Symposium on Software Testing and Analysis (ISSTA). Beijing,
China.

[27] Daniel Lehmann and Michael Pradel. 2018. Feedback-Directed Differential Test-
ing of Interactive Debuggers. In Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE). Lake Buena Vista, FL.
[28] Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo. 2021. On the Feasibil-

ity of Automated Built-in Function Modeling for PHP Symbolic Execution. In
Proceedings of the Web Conference (WWW). Ljubljana, Slovenia.

[29] Wen Li, Ming Jiang, Xiapu Luo, and Haipeng Cai. 2022. POLYCRUISE: A Cross-
Language Dynamic Information Flow Analysis. In Proceedings of the 29th USENIX
Security Symposium (Security). Boston, MA.

[30] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Proceedings of the 11th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (FSE). Paderborn, Germany.

[31] Changming Liu, Yaohui Chen, and Long Lu. 2021. KUBO: Precise and Scalable
Detection of User-Triggerable Undefined Behavior Bugs in OS Kernel. In Pro-
ceedings of the 2021 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA.

[32] Llvm. 2021. LibFuzzer. https://hammer-vlsi.readthedocs.io/en/stable/LibFuzzer.
html.

[33] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan
Zhang. 2020. Detecting Critical Bugs in SMT Solvers Using Blackbox Mutational
Fuzzing. In Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
Sacramento, CA.

[34] Paul Dan Marinescu and Cristian Cadar. 2012. make test-zesti: A symbolic ex-
ecution solution for improving regression testing. In Proceedings of the 34th
International Conference on Software Engineering (ICSE). Zurich, Switzerland.

[35] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller.
2009. Mining trends of library usage. In Proceedings of the joint international and
annual ERCIM workshops on Principles of software evolution (IWPSE) and software
evolution (Evol).

[36] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-Checking Semantic Correctness: The Case of Finding File
System Bugs. In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP). Monterey, CA.

[37] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and
Suman Jana. 2017. Nezha: Efficient domain-independent differential testing. In
Proceedings of the 38th IEEE Symposium on Security and Privacy (Oakland). San
Jose, CA.

[38] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic Execution with
SymCC: Don’t Interpret, Compile!. In Proceedings of the 29th USENIX Security
Symposium (Security). Boston, MA.

[39] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In Pro-
ceedings of the 2017 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA.

[40] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, and Christopher
Kruegel. 2016. Sok: (State of) the Art of War: Offensive Techniques in Binary
Analysis. In Proceedings of the 37th IEEE Symposium on Security and Privacy
(Oakland). San Jose, CA.

[41] Donald R Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of the
24th International Conference on Very Large Data Bases (VLDB). New York, USA.

[42] Suhwan Song, Jaewon Hur, Sunwoo Kim, Philip Rogers, and Byoungyoung Lee.
2022. R2Z2: Detecting Rendering Regressions in Web Browsers through Differen-
tial Fuzz Testing. In Proceedings of the 44th International Conference on Software
Engineering (ICSE). Pittsburgh, PA.

[43] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution. In Pro-
ceedings of the 2016 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA.

[44] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization. In Proceedings of the 2020 Annual
Network and Distributed System Security Symposium (NDSS). San Diego, CA.

[45] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT
Solvers via Semantic Fusion. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). London, UK.

[46] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely Char-
acterizing Security Impact in a Flood of Patches via Symbolic Rule Comparison.
In Proceedings of the 2020 Annual Network and Distributed System Security Sym-
posium (NDSS). San Diego, CA.

[47] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.
Precise and Scalable Detection of Double-Fetch Bugs in OS Kernels. In Proceedings
of the 39th IEEE Symposium on Security and Privacy (Oakland). San Francisco,
CA.

[48] Carter Yagemann, Matthew Pruett, Simon P Chung, Kennon Bittick, Brendan
Saltaformaggio, and Wenke Lee. 2021. ARCUS: Symbolic Root Cause Analysis

68

https://github.com/angr/angr/pull/889
https://docs.angr.io/extending-angr/simprocedures
https://docs.angr.io/extending-angr/simprocedures
https://github.com/angr/angr/pull/2956
https://www.gnu.org/software/libc/
https://github.com/php/php-src
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/aalhuz/navex
https://doi.org/10.5281/zenodo.6665380
https://hammer-vlsi.readthedocs.io/en/stable/LibFuzzer.html
https://hammer-vlsi.readthedocs.io/en/stable/LibFuzzer.html

SEDiff: Scope-Aware Differential Fuzzing to Test Internal Function Models in Symbolic Execution ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

of Exploits in Production Systems. In Proceedings of the 30th USENIX Security
Symposium (Security). Virtual event.

[49] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). San
Jose, CA.

[50] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, and
Charles Zhang. 2021. Fuzzing SMT Solvers via Two-Dimensional Input Space Ex-
ploration. In Proceedings of the 30th International Symposium on Software Testing
and Analysis (ISSTA). Online.

[51] Michal Zalewski. 2021. American Fuzzy Lop. https://github.com/google/AFL.
[52] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhen-

dong Su. 2019. Finding and Understanding Bugs in Software Model Checkers.
In Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). Tallinn,
Estonia.

[53] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-
Min Hu. 2021. TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks
with Fuzzing. In Proceedings of the 2021 USENIX Annual Technical Conference
(ATC). Virtual event.

69

https://github.com/google/AFL

	Abstract
	1 Introduction
	2 Motivation and Problem Statement
	2.1 Internal Functions in Symbolic Execution
	2.2 Function Modeling as a Practical Solution
	2.3 Research Goals
	2.4 Research Challenges

	3 Design of SEDiff
	3.1 Model Extraction with SMT-LIB and Minimal-Program Synthesis
	3.2 Identification of Modeled Functionalities
	3.3 Scope-Aware Differential Fuzzing for Models

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Identification of Modeled Functionalities
	5.3 Bug Detection
	5.4 Ablation Experiments and Comparison

	6 Discussion
	7 Related Work
	8 Conclusion
	References

