
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

All Your Clicks Belong to Me:
Investigating Click Interception on the Web
Mingxue Zhang and Wei Meng, Chinese University of Hong Kong; Sangho Lee,

Microsoft Research; Byoungyoung Lee, Seoul National University and Purdue University;
Xinyu Xing, Pennsylvania State University

https://www.usenix.org/conference/usenixsecurity19/presentation/zhang

All Your Clicks Belong to Me: Investigating Click Interception on the Web

Mingxue Zhang
Chinese University of Hong Kong

Wei Meng
Chinese University of Hong Kong

Sangho Lee
Microsoft Research

Byoungyoung Lee
Seoul National University

Purdue University

Xinyu Xing
Pennsylvania State University

Abstract
Click is the prominent way that users interact with web appli-
cations. For example, we click hyperlinks to navigate among
different pages on the Web, click form submission buttons
to send data to websites, and click player controls to tune
video playback. Clicks are also critical in online advertising,
which fuels the revenue of billions of websites. Because of
the critical role of clicks in the Web ecosystem, attackers aim
to intercept genuine user clicks to either send malicious com-
mands to another application on behalf of the user or fabricate
realistic ad click traffic. However, existing studies mainly
consider one type of click interceptions in the cross-origin
settings via iframes, i.e., clickjacking. This does not compre-
hensively represent various types of click interceptions that
can be launched by malicious third-party JavaScript code.

In this paper, we therefore systematically investigate the
click interception practices on the Web. We developed a
browser-based analysis framework, OBSERVER, to collect
and analyze click related behaviors. Using OBSERVER, we
identified three different techniques to intercept user clicks
on the Alexa top 250K websites, and detected 437 third-party
scripts that intercepted user clicks on 613 websites, which in
total receive around 43 million visits on a daily basis.

We revealed that some websites collude with third-party
scripts to hijack user clicks for monetization. In particular,
our analysis demonstrated that more than 36% of the 3,251
unique click interception URLs were related to online adver-
tising, which is the primary monetization approach on the
Web. Further, we discovered that users can be exposed to ma-
licious contents such as scamware through click interceptions.
Our research demonstrated that click interception has become
an emerging threat to web users.

1 Introduction

Clicking an HTML element is the primary way that users in-
teract with web applications. We click hyperlinks to navigate
among different documents that are interconnected through

the hyperlinks on the Web. We click form submission buttons
(e.g., the Facebook like button and the Twitter tweet button)
to share data with websites and other people on the Internet.
We click custom user interface components (e.g., the video or
audio player controls) to command various web applications.

Since clicks are important in modern web applications,
attackers have launched UI redressing attacks, namely Click-
jacking [26], to hijack user clicks. In particular, malicious
websites trick a user into clicking components (e.g., a Face-
book like button) different from what the user perceives to
click, in order to send commands on behalf of the user to
the different application they secretly embed (typically in
an iframe tag). To defend against Clickjacking, a rich col-
lection of works has been proposed, which has shown great
performance [1, 3, 10, 15, 29, 30].

Clicks are also critical in one pervasive application—online
display advertising, which powers billions of websites on the
Internet. The publisher websites earn a commission when a
user clicks an advertisement they embed from an online adver-
tising network (ad network in short). However, the ad click-
through rate is usually very low, e.g., around 2% in business-
to-consumer banner ads [18]. To increase revenue that can be
made through ad clicks, malicious websites have used bots
to automatically and massively send fake click traffic to the
ad networks, which is known as ad click fraud [5, 22, 27].
To combat against click frauds, ad networks have developed
advanced techniques to determine the authenticity of click
traffic [2, 6, 9, 38]. Consequently, traditional bot-based ad
click fraud has then become less effective.

Instead of relying on click bots, attackers recently started
to intercept and redirect clicks or page visits from real users
to fabricate realistic ad clicks. First, they infect a victim user’s
computer with malware to either force or trick a user into
submitting an ad click. For example, some “browser redirect
viruses” modify a user’s default search engine to a malicious
one, redirecting the user to an advertiser’s page when the
user clicks a search result [19]. Second, malicious third-party
iframes can automatically redirect users to an ad page. Sim-
ilarly, a user’s current tab may be automatically redirected

USENIX Association 28th USENIX Security Symposium 941

to unintended destinations when a script opens a new tab
upon click. Google recently released a new version of the
Chrome browser to automatically prevent these two types
of automatic redirects [8]. Nevertheless, Chrome still cannot
detect and prevent other possible ways to intercept user clicks,
including but not limited to links modified by third-party
scripts, third-party contents disguised as first-party contents,
and transparent overlays.

A systematic study on click interceptions is necessary to
deeply understand this emerging threat to web users. We aim
to develop a system to automatically detect such practices
on the Web, and investigate what kinds of techniques are ex-
ploited and who are involved in. We first design and develop
a system to detect various techniques employed by JavaScript
to intercept user clicks. Using this system, we then perform
a large-scale measurement with the goal of finding out those
practitioners that hijack links and deceive user clicks. Finally,
we analyze our measurement results, and explore the intents
and consequences hidden behind the click interception prac-
tices.

However, it is challenging to perform the aforementioned
systematic study because of the dynamic and event-driven
characteristics of web applications. First, JavaScript code can
be dynamically loaded. Statically analyzing the HTML source
code is insufficient to cover all scripts that can intercept user
clicks. Second, hyperlinks can be dynamically created and
modified by any scripts. To pinpoint the scripts truly account-
able for the interception, we need to re-engineer a browser to
differentiate the actions of different scripts in runtime. Third,
JavaScript can dynamically bind a URL to user click on an
arbitrary HTML element through event listeners (handlers).
Monitoring hyperlink creation and modification is insufficient
to catch all the click interception practices. Last but not least,
a web page may contain a large number of event handlers that
respond to user clicks. To perform a large-scale comprehen-
sive study, we have to efficiently interact with all those event
handlers.

To tackle the challenges mentioned above, we design our
analysis framework by customizing an open-sourced Web
browser. We first mediate all JavaScript accesses to hyper-
links in a web page in the browser’s renderer. In this way,
we can identify the initiator of the URL associated with each
hyperlink. Second, we monitor the creation and execution
of JavaScript objects so that we can track down the prove-
nance of dynamic inline JavaScript code. Third, we monitor
all event handlers registered on every HTML element and
hook navigation-related JavaScript APIs. With this design,
we can develop an automated approach to monitor the event
handlers accordingly, and determine if an event handler might
be used to hijack user clicks. Last but not least, we derive the
navigation URL without really firing the navigation that is
initiated by a user click. This allows us to interact with all
the click event handlers in an efficient way. It also helps us
understand the reason why a particular user click is of the

interest of a script.
In this work, we developed OBSERVER, a prototype of the

aforementioned analysis framework by customizing and ex-
tending the Chromium browser. Using this framework, we
performed a large-scale data crawling on the Alexa top 250K
websites. We discovered that 437 third-party scripts exhibited
the activities of intercepting user clicks on 613 websites. They
combined receive 43 million visits on a daily basis. In partic-
ular, we observed that some scripts tricked users into clicking
their carefully crafted contents, which were usually disguised
as first-party contents, or intentionally implemented as barely
visible elements covering first-party elements. In addition, we
revealed that these third-party scripts intercepted user clicks
in order to monetize user clicks, which is a new practice we
observe as committing ad click frauds. It is worth noting that
we will make our implementation publicly available.

In summary, this paper makes the following contributions.
• We design and develop OBSERVER, a framework for

studying click interception practices. This facilitates our
capability in automatically detecting a wide range of
click interception cases on various websites.

• We perform a large-scale measurement study to explore
and understand how attackers manipulate web pages in
the wild and thus intercept user clicks.

• We characterize the activities of click interceptions on
top Alexa websites and discover the intents and conse-
quences hidden behind the activities of click intercep-
tion.

2 Related Work

In this section, we introduce existing studies about how at-
tackers intercept user clicks or generate fake clicks, and how
to detect and prevent such attempts. We also explain other
studies analyzing how JavaScript libraries are included and
what their behaviors are.
Clickjacking. Clickjacking, also known as UI redressing, is
a popular attack designed to trick a victim into doing some
tasks on another website the user has logged in, bypassing
the same-origin policy. It is one type of inter-page click in-
terception in which a malicious first-party website tricks a
victim into clicking components in another website loaded
in an iframe. For example, a malicious website could load
a specific page of a target website via an invisible iframe,
and place it on top of a crafted object that looks benign and
independent to the target page. The malicious website then
can trick a victim into unintentionally clicking the target page
via the crafted object to activate some operations defined in
that page. Framebusting [29–31] is a well-known defense
to prevent clickjacking by disallowing untrusted websites to
load specified pages via an iframe. However, framebusting
is incompatible with third-party mashup or other techniques
that demand cross-origin framing [15]. Rather, other studies

942 28th USENIX Security Symposium USENIX Association

including ClickIDS [3] and InContext [10] rely on human
perception to verify whether a click was intended by a user.
Akhawe et al. [1], however, identified that such mechanisms
are not comprehensive or suffer from an unacceptable usabil-
ity cost.

Our research complements these studies by investigating
new practices of intra-page click interception by third-party
scripts, which intercept a victim’s clicks on components (in-
cluding iframes) within the same page/frame. Further, we
demonstrate that the scripts can use hyperlinks, event listen-
ers, and visual deceptions, to intercept user clicks.

Link Hijacking. Link hijacking is an attack to modify the
destination of links on websites. Nikiforakis et al. [24] inves-
tigated ad-based URL shortening services and discovered link
hijacking by an embedded third-party iframe on a “waiting
page” through automatic tab redirects, which the new Chrome
browser can prevent [8]. Our research demonstrates a new
form of link hijacking that modifies all first-party hyperlinks
before the user even clicks them, and shows our system can
automatically detect them.

Visual Deception. Prior works have studied how visual de-
ceptive contents can be used to intercept user clicks. Duman et
al. [7] studied trick banners (e.g., download buttons) that look
similar to first-party contents, and further proposed a defense
based on a supervised classifier. Rafique et al. [28] discov-
ered overlay ads and invisible banners in free live-streaming
services. Note that our research does not focus on a specific
category of visual deceptive contents or services. Moreover,
OBSERVER is able to distinguish deceptive contents created
by different scripts because of its provenance tracking capa-
bility, allowing us to detect the real culprits.

Click Fraud and Click Spam. Click fraud and click spam
are attempts to raise revenue by submitting fake ad clicks to an
ad network. In traditional click fraud, attackers usually operate
a botnet to fabricate a large number of ad clicks automatically
to an ad network. For example, Pearce et al. [27] estimated
that the ZeroAccess click-fraud botnet incurred advertising
losses on the order of $100,000 per day. In click spam, unethi-
cal content publishers or ad injection attackers [32, 37] either
trick the users into clicking ads, or use malware to click ads on
behalf of the users. Click spams could even lead victim users
to malicious ads [16, 37, 39]. Defenses against click fraud
and click spam mostly aim to distinguish fake clicks from real
clicks by analyzing their patterns [5, 6, 12, 17, 21, 22, 38].
Thus, attackers try to make their click traffic look as benign
as possible. For example, some attacks hijack real human
clicks through rogue DNS servers and redirect them to ad net-
works [2]. We discover that the click interception techniques
we identify have already been used by attackers for generating
realistic click traffic in the wild.

JavaScript Inclusion and Behavior Analysis. Numer-
ous researchers have analyzed the behavior of third-party
JavaScript libraries and how they are included. Nikiforakis et

al. [23] investigated the Alexa Top 10K websites to dis-
cover how many remote JavaScript libraries they include and
from which library hosting servers they include the scripts.
They also assessed the security of those hosting servers to
infer whether they could serve malicious JavaScript code.
Lauinger et al. [14] and Retire.js [25] studied the seman-
tics of JavaScript libraries, by considering whether hosted
JavaScript libraries are outdated or have known vulnerabilities.
Systems like EvilSeed [11] and Revolver [13] focus on detect-
ing malicious web pages using content or code similarities.
Also, ScriptInspector [40] inspects API calls from third-party
scripts to study how they interact with critical resources, such
as the DOM, local storage and network. It is able to detect
suspicious third-party scripts that violate some access poli-
cies. These studies, however, rely on the origin of a JavaScript
script to determine whether it is a first-party or third-party
script. This implies that they cannot properly handle the situa-
tion where a website includes JavaScript libraries from their
subdomains or other domains, and from other CDNs (§4.2).
Furthermore, unlike ScriptInspector, OBSERVER can track the
dynamic creation of JavaScript objects and DOM elements
such that it can accurately attribute hyperlink modifications
and event listener registrations.

3 Overview of OBSERVER

In this section, we present OBSERVER, an analysis framework
that is designed to comprehensively log all potential click-
interception-related events performed by JavaScript code in a
best-effort manner. OBSERVER focuses on three fundamental
actions that JavaScript code might rely on to intercept clicks:
1) modifying an existing hyperlink in a page; 2) creating a new
hyperlink in a page; and 3) registering an event handler to an
HTML element to hook a user click. Whenever OBSERVER
identifies any of such actions, it tags the corresponding ele-
ment with the unique identifier of the script that initiates the
action. Further, OBSERVER logs the reaction (i.e., navigation)
of a page after it intentionally clicks a hyperlink or an element
associated with an event handler in the page, to know the
URLs to which a click interceptor aims to lead a user.

In the following, we first demonstrate our threat model
(§3.1). We then describe how OBSERVER monitors the
JavaScript accesses to HTML anchor elements (§3.2), and
how it tracks the dynamic creation of HTML anchor elements
and HTML script elements (§3.3). Further, we show how
OBSERVER hooks several APIs to catch navigation-related
JavaScript event listeners (§3.4). Finally, we detail our proto-
type implementation based on the Chromium browser (§3.5).

3.1 Threat Model
In our threat model, we consider only click interception activ-
ities performed by third-party scripts as malicious. Although
first-party websites might exhibit similar activities to intercept

USENIX Association 28th USENIX Security Symposium 943

user clicks, we do not consider them as malicious, because
they have the full privilege to control their own applications.
Nevertheless, OBSERVER can comprehensively collect all
data related to click interception.

3.2 Recording Accesses to HTML Anchor El-
ements

Modifying a hyperlink in a web page is one of the most
explicit methods to intercept and navigate a user click into a
different URL rather than the original one. OBSERVER aims
to record any accesses to all hyperlinks in a web page to
detect any such attempts. In HTML, a hyperlink is defined
with an anchor element (i.e., an <a> tag), and its href attribute
specifies the associated destination URL. Thus, by monitoring
and recording which script modifies the href attribute of an
<a> tag, OBSERVER is able to recognize a script’s potential
click interception.

JavaScript can modify the href attribute through DOM
APIs in several ways. We use the keyword a to represent an
HTML Anchor Element object and the keyword url to repre-
sent a URL string in the following examples. First, a script can
directly assign a new value to the attribute as in a.href = url
;, or in a.attributes["href"] = url;. Second, it may also
call the setAttribute() API as in a.setAttribute("href"
, url) to perform a similar operation. Note that developers
may leverage APIs defined in some third-party JavaScript
libraries, e.g., jQuery, to change the attribute. OBSERVER can
cover all these wrapper libraries because they would still need
to call the above APIs defined in the DOM standard, which is
implemented by all browsers to ensure cross-browser compat-
ibility.

OBSERVER hooks all these DOM APIs to monitor modifi-
cations to the href attribute of <a> tags in the DOM. Specifi-
cally, it intercepts any call to such an API. Once intercepted,
it inspects the current JavaScript call stack to reason about
the origin of API invocation. It locates the bottom JavaScript
frame in the call stack to find the JavaScript function that
initiates the API call.
Script Identification. To attribute the API access to a spe-
cific script, we need to obtain the identity of the accessing
JavaScript code. OBSERVER assigns a scriptID to each
script object to uniquely identify it in the JavaScript run-
time. In HTML, JavaScript code is usually enclosed between
<script> and </script> tags as an inline script, or stored in
an external JavaScript file and loaded with <script> tags as
an external script. Each <script> tag is compiled into an in-
dividual JavaScript object in the JavaScript engine. There
are also other types of inline JavaScript code. For example,
JavaScript code can be written as the on-event listener at-
tributes of HTML elements. This kind of inline scripts that
are not wrapped within a <script> tag are also compiled into
separate JavaScript objects, which are identified by the unique
scriptIDs.

OBSERVER associates the scriptID of a script with its
sourceURL, which is the URL the browser uses to load the
remote JavaScript code. The sourceURL of an inline script,
however, is empty. Instead, we use the URL of the embedding
frame, i.e., the URL that the browser uses to load the HTML
document into the embedding frame, as the sourceURL of
static inline scripts. However, inline scripts can also be created
on-the-fly by JavaScript. We will discuss how we attribute
a DOM access to a dynamic inline script in §3.3.2. Besides
the scriptID, we also record the row number, column number,
and name of the function in the accessing script in a shadow
data store associated with the element. It is worth noting that
JavaScript code cannot modify the shadow data store because
it is a C++ data structure that is not writable on the JavaScript
side.

3.3 Tracking Dynamic Element Creation
Dynamically creating a new hyperlink in a web page is an-
other method to intercept a user click. In short, OBSERVER
considers direct and indirect approaches that a script can ex-
ploit to achieve this goal: 1) creating a hyperlink and 2) creat-
ing a script that creates a hyperlink.

3.3.1 HTML Anchor Elements

JavaScript code can dynamically create any HTML elements,
including an anchor element, in a web page. Specifically,
JavaScript can insert a new <a> tag into the DOM tree of a
web page through APIs such as document.write("<a>...</
a>") and document.createElement("a"). A script can even
replace the entire element with a new element by changing the
outerHTML attribute of it, e.g., a.outerHTML = '<a href="'
+ url + '">...'. These techniques could be exploited

by scripts as another way to intercept user clicks instead of
modifying existing hyperlinks. Thus, OBSERVER needs to
track the dynamic creation of <a> tags in the browser.

OBSERVER attaches a shadow initiator attribute to each
anchor element in the DOM tree to represent the creator
of the object. The initiator attribute is the scriptID of the
script that creates the corresponding element. OBSERVER as-
signs a special initiator value—0, which represents the owner
of a document—to all static elements that are built by the
browser parser. The static <a> tags are the first-party hyper-
links. OBSERVER intercepts all the element creation APIs
in the web browser to find the initiating JavaScript frame in
the call stack. The scriptID of the initiating script is used as
the initiator of the dynamically created elements (hyperlinks).
OBSERVER would also record any accesses to the href at-
tribute of the dynamically created anchor elements.

3.3.2 JavaScript

JavaScript code can also be dynamically generated in web ap-
plications, just like HTML elements. Specifically, as one class

944 28th USENIX Security Symposium USENIX Association

of HTML elements, new <script> elements can be dynami-
cally created by JavaScript using the same APIs for creating
elements. OBSERVER aims to assign unique identifies to all
of such dynamically created scripts. If an external script file is
loaded from a remote host into a dynamically inserted <script>
element, getting its identity is not different from getting the
sourceURL of one static <script> element. Some strings can
also be dynamically parsed as inline JavaScript code if they
are defined as inline event handlers or passed in the call of
APIs like window.eval("...").

However, it is not straightforward to tell the identity of a
dynamically generated inline script because its sourceURL
is blank. To overcome this difficulty, OBSERVER hooks the
APIs that are used to generate dynamic scripts. It saves the
sourceURL of the JavaScript code that calls the script gen-
eration API as the sourceURL of the newly generated inline
script. To distinguish the dynamically generated script, or the
child script (either an inline script or an external script), from
the generating script, or the parent script (the one that gener-
ates the script), OBSERVER records the scriptID of the parent
script as the parentScriptID attribute of the child script.
The parentScriptID of all scripts that are initially statically
embedded by the document owner is set to 0. This allows us
to construct a script dependency graph in the analysis.

OBSERVER also logs all accesses to any inline on-event
handlers of any DOM object as it does with the href attribute
of <a> elements. It finds the last script that sets an inline on-
event handler as its parent script and derives the sourceURL
from it. If no such an entry can be found, OBSERVER sets the
script that creates the receiver object as its parent script.

3.4 Monitoring JavaScript Event Listeners

Instead of modifying or creating hyperlinks, a script can reg-
ister an event listener or handler to an HTML element. The
event handler is asynchronously executed whenever there is
a user click on the element. In particular, a script may open
an arbitrary URL in a new browser window/tab, or send an
HTTP request in the background, when a user clicks any el-
ement it listens for. Therefore, OBSERVER aims to monitor
all event listeners registered by JavaScript code in a page to
identify whether they will navigate a user to a different URL
according to a user click.

OBSERVER first monitors event listener registration by
hooking the addEventListener() API and monitoring ac-
cesses to the on-event listeners, to identify the scripts that
are interested in user interactions. It then intercepts any click-
related user events (e.g., click and mousedown) when they
are fired in the web browser and detects the event target el-
ement in the DOM tree. Since a script may not necessarily
initiate a page navigation in its event handler (e.g., an analytic
script), OBSERVER filters those scripts by hooking several
APIs that can be used for starting a navigation, e.g., window.
open('...'), window.location = '...';, etc. OBSERVER

detects the bottom frame in the JavaScript call stack and fur-
ther constructs and logs the navigation URL in these APIs in
the shadow data store of the target element.

One challenge we met in our design is that one event
handler can be activated multiple times. In the DOM, the
events are propagated in three phases: capturing, target, and
bubbling. For example, in the capturing phase, an event
is propagated from the root node in the DOM tree—the
<html> node, then through any intermediate parent nodes,
before finally reaching the target node. An event handler
registered in the capturing phase at the <html> tag will al-
ways be triggered whenever any of its child elements is
clicked1. To avoid activating such event listeners multiple
times, OBSERVER would skip calling an event listener at a
node if the Event.currentTarget object (i.e., the current
node) is different from the Event.target object in event
propagation. We further set a flag in OBSERVER to abort all
page navigations, including those caused by clicking the <a>
tags, after the navigation URLs are saved in the logs. This
enables us to efficiently interact with all elements in a web
page without really visiting the linked URLs.

3.5 Implementation

We implement a prototype of OBSERVER in the Chromium
browser (version 64.0.3282.186). We will release our pro-
totype implementation as an open source software. We im-
plement OBSERVER in a full-fledged browser to escape any
artificial result that might be caused by using a simpler and
uncommon user agent. We add several custom attributes (e.g.,
initiator, accessLog, scriptID, parentScriptID, sourceURL)
to the Node2 objects to save the monitoring data. All these
custom attributes can be read but not written by JavaScript
for further analysis. For performance concerns, we imple-
ment a lazy update mechanism for setting the above attributes.
The values of these attributes are kept in the hidden attribute
members of the modified C++ classes. They are updated in
the DOM tree only when the attributes are first accessed by
JavaScript.

We hook the above DOM APIs by inserting custom mon-
itoring code in the C++ implementation of the V8 binding
layer between the V8 JavaScript engine and the DOM imple-
mentation in WebKit. The custom monitoring code identifies
the JavaScript caller by fetching the scriptID of the bottom
frame in the JavaScript call stack. It appends the logs of ac-
cesses to the href attribute and the inline on-event handlers to
the hidden accessLog attribute of the corresponding DOM
object. The code sets the initiator attribute of an anchor
element when it is created by either JavaScript code or the
browser parser. Furthermore, the sourceURL and parentScrip-

1An event handler registered in the bubbling phase at a parent node may
not be activated because the event propagation can be stopped by some other
event handler registered at its child node.

2Node is the base class of HTML elements in WebKit.

USENIX Association 28th USENIX Security Symposium 945

tID of all scripts are stored with a <script> object. We further
store the scriptID in the sourceURL dictionary at the global
Document object.

The prototype of OBSERVER can comprehensively log
all click-interception-related events. In the browser, a click-
driven navigation can be started by the built-in default event
handler of anchor elements (hyperlinks) and the developer-
defined event handlers, which we have introduced in §3.2
and §3.4. OBSERVER ensures complete mediation of element
accesses and event handler registrations in the C++ imple-
mentation of the corresponding DOM APIs (including the
built-in default event handler), which cannot be bypassed by
any JavaScript code. In other words, the browser must go
through the underlying C++ APIs and our monitoring code
when JavaScript code accesses any hyperlink or registers an
EventListener to any HTML element.

4 Methodology

In order to study the click interception problems in the wild,
we perform a large-scale data crawling of the Alexa top 250K
websites. We describe our data collection method in §4.1, how
we determine the owner and privilege of JavaScript code as
well as HTML elements in §4.2, and finally how we detect
three classes of click interception in §4.3.

4.1 Data Collection
We use the OBSERVER prototype to collect data for investi-
gating the click interception problem. In particular, we aim to
identify all hyperlinks and scripts that react on user clicks, and
the destination URLs that the browser would visit after the
clicks. We leverage the Selenium WebDriver Python binding
to automatically drive OBSERVER and interact with the web
page it renders. To this end, we run our analysis framework on
a 64 core CPU Linux server and collect data from the Alexa
top 250K websites.

We collect data in two phases for each web page: 1) collect-
ing default data right after page rendering; and 2) collecting
reaction data by interacting with a rendered page. In each
page navigation, we first asks OBSERVER to wait for a page
to be completely rendered by the browser for up to 45 sec-
onds. After that, we insert a script into the page to traverse
the DOM tree in pre-order to collect all the data OBSERVER
has logged with each element. In addition, we log for each el-
ement several display properties (e.g., width, height, position,
opacity, etc.) to study additional tricks that may be used to
intercept user clicks (e.g., some third-party contents overlap
with or appear similar to first-party contents). We then save a
snapshot of the current DOM tree into an external HTML file
as well as a full-page screenshot for further analysis.

Next, we interact with a rendered page to collect data about
how the page reacts to our clicks, such as navigation and DOM
modification. We disable the navigation flag in OBSERVER

to deactivate real navigations that may be caused by event
handlers or hyperlinks. We then automatically click all ele-
ments in the DOM tree through Selenium to trigger the click
event listeners and hyperlink navigations to collect navigation
logs. For each navigation triggered by a click, we log the in-
formation regarding the navigation URL, the clicked element,
and, if exist, the corresponding event listeners and scripts that
initiate the navigation. In addition, we traverse the DOM tree
again, as we do in the first phase, to identify whether scripts
update the DOM elements due to user clicks.

4.2 Third-party Content Detection

In this section, we explain our techniques to distinguish first-
party scripts/contents from third-party scripts/contents, which
is necessary to detect click interceptions driven by third-party
scripts. A naïve technique that merely relies on the exact
origin of scripts is not enough because a website frequently
loads its own scripts from its subdomains, its different do-
mains, and domains operated by others such as content deliv-
ery network (CDN) services. For example, the main page of
https://www.google.com/ includes scripts from its subdomain
apis.google.com and its CDN domain gstatic.com. If we use
only origin information, we may misidentify these scripts
as third-party scripts. We aim to solve this problem using
domain substring matching and DNS record matching.

Domain substring matching is a heuristic technique to infer
that a remote script is a first-party script if the remote script’s
domain name is similar to the current page’s domain name.
It first checks whether the main domain names of a remote
script and the current page are the same while excluding
domain suffixes. For example, a script loaded from https://
apis.google.com/ on https://www.google.co.jp/ is determined as a
first-party script because its main domain name excluding the
suffix com is google, which is identical to that of the current
page excluding the suffix co.jp. Second, it tests whether the
proper subdomain name of a remote script consists of the
main domain name of the current page without suffixes, to
come up with CDN practices that maintain custom subdomain
names for individual websites. For example, a script loaded
from https://static-global-s-msn-com.akamaized.net/ on https://
www.msn.com/ are inferred as a first-party script because the
proper subdomain name static-global-s-msn-com contains the
main domain name msn. We do realize that our technique has
limitations, which we will discuss in §6.

DNS record matching leverages several DNS records to
decide whether two distinct domains are operated by the same
organization. Specifically, we inspect the DNS SOA records
[36] and the DNS NS records [34] of the two hostnames
(domain names). An SOA record includes the email address
used to register the domain. Many organizations would use the
same email address to register multiple domains. For instance,
the SOA email addresses of google.com and gstatic.com are both
dns-admin@google.com. However, there are also exceptions.

946 28th USENIX Security Symposium USENIX Association

https://www.google.com/
apis.google.com
gstatic.com
https://apis.google.com/
https://apis.google.com/
https://www.google.co.jp/
https://static-global-s-msn-com.akamaized.net/
https://www.msn.com/
https://www.msn.com/
google.com
gstatic.com

Different organizations may use the same Managed DNS
providers [35] to register domains. Accordingly, their SOA
same email addresses are identical. For example, both dropbox.
com and bitbucket.org use awsdns-hostmaster@amazon.com
as their SOA email address.

We address this limitation by further examining if the name
server (NS) records of a script/URL and the first-party web
page have an intersection. Specifically, we use the domain
name instead of the full hostname of a NS, because one do-
main may use several NSs from a large pool. If the first-party
domain name is found in a common NS, we mark the external
script as a first-party script. For instance, both gstatic.com and
google.com use NSs nsX.google.com, where X is a numeric
value. Therefore, we determine the two domains belong to
the same organization because they have a common NS do-
main name—google.com, and an identical SOA email address.
Note that we exclude all common NSs that are operated by
any known managed or dynamic DNS providers.

Dynamic Element. Recognizing the sources of dynamic
elements is also important to identify cross-party accesses.
We classify dynamic elements into two groups based on which
parties their initiating scripts belong to. This allows us to
distinguish first-party contents from third-party contents.

4.3 Click Interception Detection

Normally, a user may explicitly click a hyperlink to navi-
gate to another web page, or click some components such as
images or buttons to interact with the current web page. How-
ever, some scripts may deliberately intercept a user’s clicks
to override the default action that the user may expect. Fur-
thermore, a user could also be fooled by a script into clicking
some components she/he would not click. We designate such
undesired click manipulation caused by privilege abuse as
click interception in web applications. As discussed earlier,
we do not consider click interceptions exhibited by first-party
scripts as malicious.

Based on how a user click could be manipulated, we cate-
gorize click interception into three classes—interception by
hyperlinks, interception by event handlers, and interception by
visual deception. In particular, a script can intercept user click
by 1) using an existing hyperlink or creating a new hyperlink;
2) registering a click event handler with an element; and 3)
manipulating the UI to deceive a user into clicking elements
controlled by the script.

In the following, we explain the methods to detect the three
classes of click interception. Specifically, we leverage the
navigation URL and the navigation APIs3 (§3.4), and the
display properties of the element (§4.1).

3The default event handler of <a> tags is also considered as one API.

4.3.1 Interception by Hyperlinks

In general, a script can intercept user clicks with hyperlinks
in two ways: modifying one existing (first-party) hyperlink,
and adding one hyperlink to a huge element.
Modifying Existing Hyperlinks. A third-party script can
intercept a user’s click through a first-party hyperlink by over-
writing the href attribute. A third-party script might also
employ a similar approach to intercept a user’s click on an-
other third-party hyperlink. Therefore, we search in the href
attribute log of an anchor element the last script that modifies
its value. If a (different4) third-party script is found, the script
is marked as one click interception script. We use the tech-
nique in §4.2 to determine if the script and the anchor element
belong to the same organization. A third-party script might
also intercept a user’s click through attaching an event listener
to a first-party hyperlink, which we discuss in the following
section. Note that although a first-party script may modify a
third-party hyperlink, we think this is legitimate because the
first party as the owner of the web page is entitled to include
or remove any third-party contents.
Creating Huge Hyperlinks. A script can trick users into
clicking its hyperlink by enclosing a huge clickable element.
In particular, it can enclose a significant part of its web page
within one <a> tag such that a click on any of the enclosed
contents would result in a page navigation that is controlled
by it. Therefore, we also check the size of an anchor element
relative to the browser window5. Specifically, we use 75% as
the threshold to detect the suspicious huge hyperlinks that
can be used to intercept user clicks. According to our knowl-
edge, most (but not all) links on the web are relatively small
compared to the browser window. Therefore, we think 75%
is a reasonably large threshold to help quickly identify the
suspicious ones. Further, we exclude any hyperlinks pointing
to a first party navigation URL, because the first party has the
right to use huge hyperlinks in its own pages.

4.3.2 Interception by Event Handlers

The event handlers are the second technique that a script can
use to intercept user clicks. However, a script listening for
user click may not necessarily navigate the user to another
URL. For instance, an analytic script may observe user clicks
to determine and log only user engagement within the current
page. We leverage the navigation-related APIs to solve this
problem.

To start a new navigation, a developer needs to either call
the window.open()API or change the location of the current
frame. The two JavaScript DOM APIs are implemented by
the C++ methods LocalDOMWindow::open() and Location::
SetLocation() in WebKit, respectively. For each element, we

4We use the term a different script to represent a script of a different
organization in the rest of the paper.

5We used 1024px x 768px as the browser window size in our experiments.

USENIX Association 28th USENIX Security Symposium 947

dropbox.com
dropbox.com
bitbucket.org
gstatic.com
google.com

examine if the two C++ methods are (indirectly) called upon
a click on the element. We then extract the navigation URLs
from the associated logs.
Third-party Interception Scripts using Event Handlers.
We determine a third-party script as a click interception script
if it (indirectly) calls either one of the above two C++ methods
in its click event listener that is added to a first-party element.
We name such a click event listener as a navigation event
listener. Similarly, if such a navigation event handler is added
to a third-party element created by the script of a different
organization, the third-party script implementing the event
handler is also determined as a click interception script.
Intercepting Huge Elements with Event Handlers. We
use the same 75% relative size threshold to detect suspicious
huge elements that are registered with a third-party navigation
event handler and can be used to intercept user clicks. We
also filter the elements that are associated with a first-party
navigation URL.

4.3.3 Interception by Visual Deception

Third party scripts can also intercept a user’s clicks through
visual implementation tricks to deceive a user. In particular,
the third-party contents are designed in some way such that a
user is likely to click. We do not consider first-party contents
with similar characteristics malicious because the first-party
websites have the complete freedom to design their contents.

This last click interception category could be controversial
in our opinion, as some third-party developers may argue that
they do not intend to deceive the end users. Nevertheless,
we still classify such practices as click interception (but not
necessarily malicious) because the users can be deceived
through the visual tricks.

We have identified two possible visual deceptions—
mimicry, and transparent overlay. We detect these visual de-
ceptive tricks for each group of third-party elements, which
are the largest sub DOM tree that consists of only elements
of the same third-party script (organization).
Mimicry. Some third-party script would deliberately dec-
orate its elements such that they are almost visually indis-
tinguishable from first-party contents. A user might conse-
quently click these mimic elements. However, the imitating
elements are usually not exact copies of some first-party ele-
ments. As a result, we cannot use pixel-wise comparison to
detect such mimic elements.

We utilize the structural information as well as the display
properties of a third-party element group to detect mimicry.
Specifically, we compute the relative size of media contents,
e.g., images, videos, and iframes, in a group of third-party
elements, as well as the size of the largest container of them.
We then compute the same metrics for any group of first-party
elements whose root node is a sibling (neighbor) to that of
the third-party element group. Next, we calculate a similarity
score between the two groups of elements using: 1) the CSS

class names of the two root nodes, which are primarily used to
describe the representations of HTML elements; 2) the num-
bers of each kind of media tags, which indicate how media
contents are implemented; and 3) the relative sizes of media
contents in two groups and the sizes of the largest container
nodes, which represent the visual layout of an element group.

We set a threshold learned from our training phase to keep
only third-party element groups that are very similar to some
first-party element groups. Note that we compute the similar-
ity scores using the display property data before we click the
elements to find the elements whose default representation
is likely to fool a user. We do acknowledge that there are
other features (e.g., the DOM tree structure, color histogram)
that may better determine the similarity. However, we find
the ones that we select work well in our manual test over a
small set of samples. We plan to leverage more sophisticated
techniques (e.g., image classification [7]) in our future work.
Transparent Overlay. A third-party script can inject con-
tents that partially overlap with or completely cover first-party
contents. In the case that some first-party contents are com-
pletely covered, the user might not notice their existence and
treat the covering third-party contents as first-party ones. Fur-
ther, a script can make some of its elements barely visible
by setting a small value to their opacity style property. Sub-
sequently, a user’s click could be delivered to these “hidden”
elements when the user is intending to click some other ele-
ments beneath them. We detect transparent overlay third-party
contents in the following two steps.

First, for each group of third-party elements, we compute
the minimum portion of a first-party element that it overlaps
with. Specifically, we scroll the browser window virtually to
compute all the possible overlapped regions with each first-
party element. If the covered portion of a first-party element
is always greater than a pre-defined threshold (e.g., 25%), we
label this group of third-party elements as overlay elements.
Since some third-party scripts may implement components
allowing a user to cancel out the overlay elements, we further
exclude those that no longer significantly overlap with any
first-party element after our automatic clicks, which must
include a click on one of such cancel-out buttons if there are
any. However, this method may not work well in some cases.
For example, the covering elements could first be hidden by a
click on a cross button, and later be revealed by another click
on another button. We consider it as a limitation and plan to
leverage knowledge in computer vision to develop a better
automated testing method in our future work.

Next, we detect third-party transparent overlay element
groups by comparing the opacity value collected in the display
properties with a small threshold (e.g., 0.1). A zero opacity
value indicates complete transparency. We do not consider
elements whose style is visibility: hidden or display: none
because user clicks are not passed to these invisible elements.
In addition, we keep only the transparent third-party element
groups that are big enough to be easily clickable, i.e., the

948 28th USENIX Security Symposium USENIX Association

container size is greater than 1% of the browser window size.

5 Click Interception in the Wild

In this section, we first present our analysis on data collected
in our web crawl (§5.1), then characterize click interception by
demonstrating how different techniques (§5.2) are employed
by which scripts (§5.3) to intercept user clicks, and finally
explain why they do it and its consequences (§5.4).

5.1 Dataset
We crawled data from the main pages of Alexa top 250K
websites in May 2018. Excluding those that timed out or
crashed in our data collection process, we were able to gather
valid data of 228,614 (91.45%) websites. We identified third-
party navigation URLs (the first URL the browser would visit
upon a user click) collected in a web page using the method
described in §4.2. We obtained 2,065,977 unique third-party
navigation URLs, which corresponded to 427,659 unique
domains. On average, a web page contains 9.04 third-party
navigation URLs, pointing to 1.87 domains.

We visited each of the 2M navigation URLs and recorded
both the intermediate redirect URLs and the landing URL. We
could not visit 39 URLs in our experiment because of various
errors (e.g., HTTP 404 status code, too many redirects, etc.).
We managed to obtain 1,982,613 unique landing URLs.

We collected 413,075 intermediate redirect URLs (exclud-
ing the navigation URLs and the landing URLs) in this pro-
cess. Specifically, we observed no redirection for 1,263,754
(61.17%) navigation URLs. We encountered at most 29 inter-
mediate hops before we reached a final landing URL.

We detected 2,001,081 distinct third-party scripts that were
loaded from 1,170,582 different domains. On each page, there
are on average 8.75 third-party scripts.

5.2 Click Interception Techniques
In this section, we demonstrate how the different techniques
that we identify in §4.3 are employed for click interception.

5.2.1 Interception by Hyperlinks

We identify three possible ways that a third-party script can
intercept user clicks through hyperlinks (§4.3.1). In total,
we observe that 4,178 hyperlinks on 221 websites were in-
tercepted, which can lead a user to 2,695 distinct third-party
URLs. We present in Table 1 the breakdown of the 4,178 links
and the total number of daily visits to the affected websites6.
Hyperlink Modifications. Surprisingly, the href attribute of
4,027 first-party <a> tags on 100 websites were directly tam-
pered by a third-party script. For instance, the ad URL shorten-
ing script https://cdn.adf.ly/js/link-converter.js modified the href

6We get the statistics using the SimilarWeb API.

Table 1: Categorization of Click Interception Techniques

Technique #Cases #Websites %Cases #Visits/day

Hyperlinks 4,178 221 89.52 12,686,591
Modifying 1st-party links 4,027 100 86.29 2,496,620
Modifying 3rd-party links 31 2 0.66 638,247
Inserting huge 3rd-party links 120 119 2.57 9,551,724
Event Handlers 203 172 4.35 5,455,821
On 1st-party nodes 189 161 4.05 4,636,145
On 3rd-party nodes 14 12 0.30 819,676
On huge 3rd-party nodes 0 0 0 0
Visual Deceptions 286 231 6.13 25,269,314
Mimicry 140 87 3.00 16,604,258
Transparent Overlay 146 144 3.13 8,665,056

attribute of one anchor element to http://ay.gy/2155800/... on the
website http://magazinweb.net/. Similarly, the third-party script
https://cpm4link.com/js/full-page-script.js modified hyperlinks
on the website https://www.lnmta.com/ to https://cpm4link.com/
full/?api=.... They are obviously privilege abuses. In addition,
we find that 31 third-party hyperlinks on 2 websites were mod-
ified by a different third-party script. For example, the script
https://s7.addthis.com/js/300/addthis_widget.js modified 11 third-
party hyperlinks on the website https://www.crazy-net.com/ to
https://plus.google.com/110631064773293614230; the script http:
//media1.admicro.vn/core/log_cafef.js modified 20 third-party
hyperlinks on the website http://cafef.vn/ to http://lg1.logging.
admicro.vn/nd?nid=.... This indicates that those third-party
scripts indiscriminately modify anchor elements to intercept
user clicks.

Huge Hyperlinks. We observe 120 huge third-party <a>
tags on 119 websites. These anchor elements enclose contents
whose size is at least 75% of the browser window size. As a
result, a visitor has a very high chance to click such an anchor
element. For example, on the website http://torrents73.ru/, the
third-party script http://gynax.com/js/MjgxMw==.js created a
large anchor, which encloses a huge background image. Users
would be directed to another page https://wheel.grand-casino48.
com/ upon a click. We also identify that 135 websites used
148 huge first-party <a> tags, which we currently consider as
legitimate as we discussed in §3.1.

5.2.2 Interception by Event Handlers

We analyze how event handlers are exploited to intercept user
clicks. Overall, we find 203 elements across 172 websites
were attached with navigation event handlers, which would
drive a user to a third-party URL upon click.

We observe that 189 first-party elements of 161 websites
were added at least one third-party navigation event han-
dler. For example, the third-party script https://smashseek.com/
rq/4949 intercepted user clicks on the website https://www1.
mydownloadtube.com by adding a navigation event listener to
the <html> element. The user’s browser would open a new
URL (the specific URL changes upon each user click) when

USENIX Association 28th USENIX Security Symposium 949

https://cdn.adf.ly/js/link-converter.js
http://ay.gy/2155800/...
http://magazinweb.net/
https://cpm4link.com/js/full-page-script.js
https://www.lnmta.com/
https://cpm4link.com/full/?api=...
https://cpm4link.com/full/?api=...
https://s7.addthis.com/js/300/addthis_widget.js
https://www.crazy-net.com/
https://plus.google.com/110631064773293614230
http://media1.admicro.vn/core/log_cafef.js
http://media1.admicro.vn/core/log_cafef.js
http://cafef.vn/
http://lg1.logging.admicro.vn/nd?nid=...
http://lg1.logging.admicro.vn/nd?nid=...
http://torrents73.ru/
http://gynax.com/js/MjgxMw==.js
https://wheel.grand-casino48.com/
https://wheel.grand-casino48.com/
https://smashseek.com/rq/4949
https://smashseek.com/rq/4949
https://www1.mydownloadtube.com
https://www1.mydownloadtube.com

a user clicks any element on this page7. Another example
is detected on the page http://azasianow.com/, where the third-
party script http://fullspeeddownload.com/rq/4297 registered an
event handler on the <body> element. We also consider such
practices as a type of privilege abuse, as they force a user
to visit a URL when the user interacts only with first-party
contents. What is worse, even an experienced user with some
technical background cannot easily find out that the naviga-
tion is actually controlled by a third-party script rather than
the website she/he directly visits.

Interestingly, we find on 12 websites that 14 third-party ele-
ments were attached with navigation event handlers by a third-
party script of a different organization. For example, the web-
site https://www.mlbstream.io/ included the third-party script
https://amadagasca.com/rgCQwi5INUm04AxMu/5457, which reg-
istered an event handler on an element. The user would
be directed to https://jackettrain.com/imp/5457/?scontext_r=...
upon clicking on that image and finally land at a random
website. One possible reason is that the attaching scripts were
loaded after the other third-party scripts had inserted those
elements, so that they mistakenly attached event handlers to
the other third-party elements.

We do not find any third-party script intercepting user clicks
by registering navigation event handlers with huge third-party
elements. On the other hand, we discover 2 websites added
navigation event handlers to their own huge elements. In
particular, the websites http://www.force-download.net/ and http:
//www.force-download.es/ both registered a navigation event
handler to the <html> node to intercept user clicks, just as the
above-mentioned third-party scripts. Nevertheless, we do not
consider them as malicious.

5.2.3 Interception by Visual Deception

We analyze how the two visual deception techniques, mimicry
and transparent overlay (§4.3.3) are used in the wild.
Mimicry. We discover 140 mimic third-party element groups
on 87 websites. These third-party contents are carefully de-
signed to resemble nearby first-party contents. Hence, unwary
users are very likely to be fooled and consequently click them.

Figure 1(a) shows an example of such a mimicry trick
that we detect on the website https://www.bintang.com. The
contents enclosed within the yellow rectangle were inserted by
the third-party script https://securepubads.g.doubleclick.net/gpt/
pubads_impl_207.js, whereas those in the red rectangles were
the organic first-party contents. Without scrutiny, they just
look like each other. The only visual hint for discriminating
them is the text Sponsored, which was displayed in a very
small font size just as the first-party sub captions in the red
rectangles. Even though a user may notice this small text,
she/he may still decide to click the third-party elements as they
appear to be provided directly by the first-party website which

7This is not true for elements with other click event listeners that stop the
event propagation.

(a) Mimicry.

(b) Transparent overlay.

Figure 1: Examples of visual deceptive third-party contents.

she/he trusts. However, such trust would be abused in this case
because those contents were generated solely by a third-party
script the user does not know. In particular, the navigation
URL was under the full control of this unknown third-party
script and could take the user to any (potentially unsafe) page.
We will discuss more about the security implication in §5.4.
Transparent Overlay. We detect 146 transparent overlay
third-party element groups on 144 websites. Specially, they
covered a significant portion (at least 25%) of first-party ele-
ments regardless of mouse scroll. We could not cancel them
out by automatically clicking elements in those websites. Fur-
ther, they were either completely transparent or translucent
with a very low opacity style value. What is worse, many
of them contained NO user-perceivable content (e.g., texts
or images), hence being transparent. As a result, they were
almost—if not absolutely—invisible and thus difficult to be
noticed.

Figure 1(b) demonstrates an example of such a visual trick
that we identify on the website http://jgsdf.ucoz.com. The yel-
low rectangle includes the third-party contents that over-
lapped with the underlying first-party contents, which are
enclosed by the cyan rectangles. The script that created these
third-party contents is http://pl14318198.puserving.com/a2/49/
14/a2491467a19ffc3f9fe0dbe66e54bae0.js. Although the overlay
third-party contents were not visible in this case, they con-
stantly covered about 50% of the first-party contents in the
cyan rectangles no matter how a user scrolled this page. As
a result, this script could intercept any click on the covered
first-party elements, because the click would be first passed to
the overlay third-party elements. When a user clicked within
the area of yellow rectangle, an ad link was opened in a new
window.

Although third-party scripts can deceive a user with differ-
ent tricks, the effectiveness can vary dramatically depending
on their implementation and the end user’s technical back-
ground. In general, we think they are less effective compared
with the other two direct techniques we have discussed above.
In particular, whether the mimic contents are deceptive is re-
ally subjective. We leave it for our future work to examine

950 28th USENIX Security Symposium USENIX Association

http://azasianow.com/
http://fullspeeddownload.com/rq/4297
https://www.mlbstream.io/
https://amadagasca.com/rgCQwi5INUm04AxMu/5457
https://jackettrain.com/imp/5457/?scontext_r=...
http://www.force-download.net/
http://www.force-download.es/
http://www.force-download.es/
https://www.bintang.com
https://securepubads.g.doubleclick.net/gpt/pubads_impl_207.js
https://securepubads.g.doubleclick.net/gpt/pubads_impl_207.js
http://jgsdf.ucoz.com
http://pl14318198.puserving.com/a2/49/14/a2491467a19ffc3f9fe0dbe66e54bae0.js
http://pl14318198.puserving.com/a2/49/14/a2491467a19ffc3f9fe0dbe66e54bae0.js

how effective the visual deceptions are on real users.

5.2.4 Evasion of Detection

We also detect a few cases that third-party scripts selectively
intercepted user clicks. In particular, they would limit the rate
at which they intercept the clicks to avoid a user’s suspicion.
For instance, some scripts would activate the page navigation
code in their event handlers only when a user first visits a
page. This can be easily implemented by dropping a cookie
in a user’s browser. They might clear this flag after some time
(e.g., a day) to reactivate the click interception code. However,
we do not have enough data to learn the timeouts they use.
We discuss next such a detection evasion example.

The script https://pndelfast.com/riYfAyTH5nYD/4869—
included by the website https://torrentcounter.to/—selectively
intercepted the user clicks on the background of the website.
We observed the interception only when we visited the
page with a clean cookie, which suggests the script used
a cookie to log click interception status. Interestingly, we
find the script was obfuscated to prevent a normal user from
analyzing it. We deobfuscate the script (Listing 1), and
search for the keyword cookie. As expected, we find several
functions that are used to control the rate of click interception.
Lines 8, 13, and 16 define the functions "setCookie",
"removeCookie", and "getCookie", respectively. Line 6
defines the "timeout" variable that we suspect to control
the interception timeout or interval. It sets the cookie in
Line 28, if the return value of the function init defined in
Line 20 is not true. The cookie is deleted in Line 33. This
script also defines several variables, e.g., "certain_click
", "every_x_click", "delay_before_start_clicks",
"click_num", "interval_between_ads_clicks", which we
believe to be used to control click interception. As is limited
by the space, we do not discuss in more details how the script
works. It would be an interesting research topic to investigate
how these scripts cloak their malicious activities to avoid
detection.

Summary. We confirm that various click interception tech-
niques have been used in the wild. Third-party scripts
intentionally intercepted user clicks using event listeners,
and manipulate user clicks through visual deceptions. They
also leveraged huge anchor elements to deliberately inter-
cept user clicks. Further, many third-party scripts even
modified first-party hyperlinks to intercept user clicks.

5.3 Click Interception Scripts

In this section, we characterize click interception based on
the third-party scripts that intercept user clicks. Further, we
investigate how they were embedded to intercept user clicks.

1 var _0x3e0d = ["...", "certain_click", "every_x_click"
, "delay_before_start_clicks", "click_num", "
interval_between_ads_clicks", "has_adblock", "...
"];

2 var build = function() {
3 var target = {
4 "data" : {
5 "key" : "cookie",
6 "value" : "timeout"
7 },
8 "setCookie" : function(value, name, path, headers)

{
9 var cookie = name + "=" + path;
10 headers["cookie"] = cookie;
11 },
12 "removeCookie" : function() {
13 return "dev";
14 },
15 "getCookie" : function(match, href) {
16 var v = match(new RegExp("(?:^|;)" + href["

replace"](/([.$?*|{}()[]\/+^])/g, "$1") + "
=([^;]*)"));

17 return v ? decodeURIComponent(v[1]) : undefined;
18 }
19 };
20 var init = function() {
21 var test = new RegExp("\\w+ *\\(\\) *{\\w+

*['|\"].+['|\"];? *}");
22 return test["test"](target["removeCookie"]["

toString"]());
23 };
24 target["updateCookie"] = init;
25 var array = "";
26 var _0x418128 = target["updateCookie"]();
27 if (!_0x418128) {
28 target["setCookie"](["*"], "counter", 1);
29 } else {
30 if (_0x418128) {
31 array = target["getCookie"](null, "counter");
32 } else {
33 target["removeCookie"]();
34 }
35 }
36 };

Listing 1: A simplified click interception script from https:
//pndelfast.com.

5.3.1 Third-party Scripts Characterization

Our results in §5.2 demonstrate that third-party scripts lever-
age all the three techniques to intercept user clicks. We present
the statistics of these scripts—the unique number of script
URLs, origins, and domains in Table 2.

Huge Hyperlinks. We detect 86 unique third-party scripts
that injected huge <a> tags into their embedding pages. We
show the top 5 origins of such scripts in Table 3. The notice-
able scripts are those loaded from http://gynax.com. They were
found to create one huge <a> element on each of 47 web-
sites they were included. Each <a> tag was enclosed within a
<noindex> element, which further contained a full-page image.
All the hyperlinks would finally reach https://wheel.28grand-
casino.com/, which is an online gambling game website.

Hyperlink Modifications. We detect 57 unique third-party
scripts that directly intercepted user clicks by modifying first-
party hyperlinks. We show the top 10 origins of such scripts
in Table 4. The top script https://cdn.adf.ly/js/link-converter.js

USENIX Association 28th USENIX Security Symposium 951

https://pndelfast.com/riYfAyTH5nYD/4869
https://torrentcounter.to/
https://pndelfast.com
https://pndelfast.com
http://gynax.com
https://wheel.28grand-casino.com/
https://wheel.28grand-casino.com/
https://cdn.adf.ly/js/link-converter.js

Table 2: Statistics of unique click interception scripts.

Technique #URLs #Origins #Domains

Hyperlinks 145 76 63
Modifying 1st-party links 57 41 35
Modifying 3rd-party links 2 2 2
Inserting huge 3rd-party links 86 33 26
Event Handlers 106 72 58
On 1st-party nodes 103 69 55
On 3rd-party nodes 7 7 7
On huge 3rd-party nodes 0 0 0
Visual Deceptions 197 173 95
Mimicry 78 60 54
Transparent Overlay 119 114 42

Table 3: Top 3rd-party script origins injecting huge anchors.

Script #Websites #Elements

http://gynax.com 47 47
https://securepubads.g.doubleclick.net 7 7
https://yastatic.net 7 7
http://bgrndi.com 6 6
http://js883.guangzizai.com 5 5

was found on 18 websites. Adf.ly is a short URL service that
helps websites monetize their links. As its name suggests, this
script converts every first-party hyperlinks to a third-party
hyperlink. If a user clicks any converted hyperlink, the user
would be taken to an intermediary page of adf.ly hosted on
http://clearload.bid/. This page displayed an advertisement as
shown in Figure 2. The user can click the SKIP AD button
on the right top corner to continue to visit the original first-
party hyperlink. Many other top scripts in Table 4, e.g., https:
//linkshrink.net/fp.js, https://api.getsurl.com/js/get_auto.js and https:
//adshort.co/js/full-page-script.js, worked in a very similar way.
This is definitely very distracting to users. However, as we will
demonstrate next in §5.4, the first-party websites explicitly
included these click interception scripts to monetize their
websites.
Event Handlers and Visual Deceptions. We find 103
unique third-party scripts which listened for clicks on first-
party elements to intercept user clicks. We also discover 78
and 119 unique third-party scripts that injected mimic and
transparent overlay contents, respectively, into the embedding
websites. We discuss next that how these click interception
third-party scripts were included in those “victim” websites.

5.3.2 Click Interception Script Inclusion

While we discover that third-party scripts deliberately inter-
cepted clicks via several tricks, it is not clear if they were
intentionally included by the first-party websites. To this end,
we analyze the script dependency data to figure out the inclu-
sion relationship between third-party scripts and first-party
websites. In particular, we aim to determine if a click inter-
ception third-party script was directly included by the website

Table 4: Top 3rd-party script origins modifying first-party links.

Script #Websites #Elements

https://cdn.adf.ly 18 583
https://cdn.shopify.com 11 245
https://static.v2.paysites.czechcash.com 9 640
https://www.sc.pages02.net 7 82
https://linkshrink.net 7 190
https://api.getsurl.com 5 384
https://static-js.sixshop.co.kr 4 59
http://cdn.adf.ly 2 190
http://shinkme.com 2 38
https://adshort.co 2 28

Figure 2: A drive-by download page visited via click interception.

itself, or indirectly included by another third-party script.
We categorize how a remote third-party script can be in-

cluded into three classes. First, a third-party script is stati-
cally included by the first-party website, if the corresponding
<script> tag is statically defined in the original web page
HTML source. Next, a third-party script is dynamically in-
cluded by the first-party website, if it is loaded through a
<script> tag that is dynamically created by a first-party script,
including those first-party scripts hosted on a different do-
main. Finally, a third-party script is dynamically included by
another third-party script, if it is loaded through a <script>
tag that is dynamically created by another third-party script.
We summarize the results in Table 5.

Static Inclusion. We find that the majority of these third-
party scripts, i.e., 280 unique scripts (64.07%) out of 437 third-
party click interception scripts, were statically included by
397 websites. This indicates that these websites deliberately
included the click interception scripts, even though they may
not intercept user clicks by themselves. In particular, the short
URL monetization script https://cdn.adf.ly/js/link-converter.js
was found to be statically included by those 18 websites.
The script https://wchat.freshchat.com/js/widget.js was statically
included by 17 websites. These websites explicitly allowed
such scripts to intercept their users’ clicks in exchange for
payments.

Dynamic Inclusion. We discover that 103 unique third-party
scripts (23.57%) were dynamically included by first-party

952 28th USENIX Security Symposium USENIX Association

http://clearload.bid/
https://linkshrink.net/fp.js
https://linkshrink.net/fp.js
https://api.getsurl.com/js/get_auto.js
https://adshort.co/js/full-page-script.js
https://adshort.co/js/full-page-script.js
https://cdn.adf.ly/js/link-converter.js
https://wchat.freshchat.com/js/widget.js

Table 5: How third-party click interception scripts are included.

Inclusion Type #Websites #Scripts

Statically included by 1st-party website 397 280
Dynamically included by 1st-party website 112 103
Included by another 3rd-party script 104 63

websites. For instance, the scripts script=http://gynax.com/j/
w.php and http://bgrndi.com/js/NTQw.js were dynamically in-
cluded by 5 and 4 first-party websites, respectively. In other
words, these websites used JavaScript to dynamically create
<script> tags to include those scripts. Such websites would
be responsible for the privilege abuses by those click inter-
ception scripts even if they do not intercept user clicks. They
either did not scrutinize the scripts before including them, or
deliberately allowed them to intercept user clicks.

Indirect Inclusion. On the other hand, we discover that only
63 third-party click interception scripts (14.42%) were in-
directly included by other third-party scripts. One such a
top script is https://tags.bkrtx.com/js/bk-coretag.js, which was
included by other third-party scripts on 6 websites. For
example, it was included by the script https://s.accesstrade.
net/js/atd/bluekai/atd_bluekai.js?id=... on the website https://
haken-mikata.com. The latter script was also indirectly in-
cluded by another script https://s.accesstrade.net/js/atd/satd.js?
pt=824F2E4C4077D97ECC014C7A3DE07136725853, which was
statically included by the first-party website. In such cases,
we cannot blame the first-party websites for indulging those
suspicious scripts. Click interception caused by these scripts
could be prevented if the websites configure a proper Content
Security Policy (CSP) [33] that disallows the browser to load
scripts from unknown sources. However, in practice it is diffi-
cult and even infeasible to use CSP because many websites
need to allow dynamic inclusion of advertising scripts that
may be loaded from arbitrary sources due to ad syndication.
Therefore, a finer-grained security policy that limits the privi-
lege of included scripts would be more desirable in preventing
such privilege abuses.

Summary. We discover that 437 third-party scripts at-
tempted to intercept user clicks on a total of 613 websites.
Several top third-party scripts deliberately intercepted user
clicks on all their embedding websites. Surprisingly, many
of them were included directly by the first-party websites,
to monetize the hyperlinks, or more accurately, the user
clicks, of those websites.

5.4 Click Interception Reasons and Conse-
quences

We have demonstrated that some third-party scripts inter-
cepted user clicks through various tricks. In this section, we
seek to understand the motivations and consequences of such
undesired activities.

Table 6: Advertising click interception navigation URLs.

Technique #URLs #Ad URLs %Ad URLs

Hyperlinks 2,695 1,088 40.37
Event Handlers 186 21 11.29
Visual Deceptions 380 74 19.47

5.4.1 Monetization

As we have demonstrated in §5.3.1, many third-party scripts
offer monetization services by converting first-party hyper-
links into third-party ad links. They force a user to view an
advertisement before navigating to the original destination
page when the user clicks any hijacked link. As a result, both
the third-party click interception script and the first-party
website can earn some commission from those participating
advertisers. Similarly, we find many other cases where a click
was intercepted by a third-party script to visit an advertiser’s
landing page.
Identifying Advertising URLs. To understand if moneti-
zation via advertising is really a common reason for click
interception, we compare the navigation URLs in the click
interception cases with all the other navigation URLs in our
dataset. Specifically, we leveraged the Ghostery extension to
determine if one navigation URL is advertising-related by
testing if it matches the URL pattern of any known advertis-
ing company. A navigation URL is marked as an advertising
URL, if a positive match is found for any of its intermedi-
ate redirect URLs (if any) and the landing URL. We also
manually labeled the URLs generated by those short URL
monetization scripts as ad URLs because they are not known
to the extension.

Surprisingly, we find that 1,183 (36.39%) out of the 3,251
unique click interception navigation URLs are advertising
URLs (Table 6), which is a 18.7 times higher rate than that
of normal third-party navigation URLs8. In total, only 40,278
(1.95%) out of the 2,065,977 third-party navigation URLs are
identified as advertising URLs.
Potential Click Fraud. These click interception websites
and scripts have a “good” reason to trick users into click-
ing those advertising URLs. In online display advertising,
the publishers and the ad networks are paid by an advertiser
when a user clicks the advertiser’s ad under the pay-per-click
billing mode. Although they can also earn some commission
for an ad impression in the pay-per-view billing mode, the
money is much less than what they can get paid when the
ad is clicked. However, the ad click-through rate is usually
very low—around 2% (in a business-to-consumer banner ad
case [18]). To boost ad revenue, the straightforward and effec-
tive approach is to leverage real user clicks, as modern ad net-
works can accurately detect bot-based click frauds [2, 6, 9, 38].
On the other hand, the third-party scripts also have the incen-

8We exclude all first-party navigation URLs in our analysis.

USENIX Association 28th USENIX Security Symposium 953

script=http://gynax.com/j/w.php
script=http://gynax.com/j/w.php
http://bgrndi.com/js/NTQw.js
https://tags.bkrtx.com/js/bk-coretag.js
https://s.accesstrade.net/js/atd/bluekai/atd_bluekai.js?id=...
https://s.accesstrade.net/js/atd/bluekai/atd_bluekai.js?id=...
https://haken-mikata.com
https://haken-mikata.com
https://s.accesstrade.net/js/atd/satd.js?pt=824F2E4C4077D97ECC014C7A3DE07136725853
https://s.accesstrade.net/js/atd/satd.js?pt=824F2E4C4077D97ECC014C7A3DE07136725853

tive to cheat advertisers for higher income because many of
them are also ad networks. This well explains why the short
URL monetization scripts, which also operate as ad networks,
have been helping websites intercept user clicks.

In our research, we observe that third-party scripts have
leveraged various click interception techniques to monetize
user clicks. Further, our results demonstrate that click inter-
ception has become an emerging way for generating realistic
click traffic to commit ad click fraud.

5.4.2 Distributing Malicious Content

Besides monetization, we find that click interception can lead
a user to visit malicious contents. In particular, we were di-
rected to some fake anti-virus (AV) software and drive-by
download pages when we manually examined some of the
click interception URLs.

For instance, we were forced to visit an ad click URL by
the script https://pndelfast.com/riYfAyTH5nYD/4869 on the web-
site https://torrentcounter.to/. Since the navigation URL is an
ad click URL, the landing URL is random each time we visit.
Nonetheless, one landing URL we visited is a fake AV web-
site, as shown in Figure 3(a). This website showed some fake
warnings about virus infection with alarm to fool the user
into clicking the Scan Now button. After that, it displayed
some scanning animation and finally generated a fake scan
report to trick the user into installing the fake AV software, as
shown in Figure 3(b). The Google search results of the domain
1bcde.com also suggest it is a malicious redirect website.

We also find that the script http://cdn.adf.ly/js/link-converter.js
converted one link of the website http://magazinweb.net/ into
http://ay.gy/2155800/..., which is an advertising link. It once
took our browser to a drive-by download page, as shown in
Figure 2. When we visited the page, our browser automati-
cally started downloading the MacKeeper installer, which is
considered as scamware [20]. The page even shows detailed
instruction to trick the user into installing this scamware.

These are just two of many malicious examples we have
encountered in our manual investigation. We think that there
were much more malicious cases that we have yet to discover.
Unfortunately, manually verifying all the 2 million URLs in
our dataset is infeasible. We plan to leverage automated URL
scanning techniques to automatically detect the malicious
URLs associated with click interception in the future.

Summary. We identify that many third-party scripts in-
tercept user clicks to monetize user clicks. In particular,
they intercept real user clicks to fabricate ad clicks as a
new form of committing ad click fraud. Further, the land-
ing URLs that they trick the users into visiting can be
malicious.

(a)

(b)

Figure 3: A fake AV website visited because of click interception.

6 Discussion and Future Work

We discuss the limitations of our work, the possible mitigation
of the click interception threat, and our future work.

Third-party Script Detection. Our methodology for distin-
guishing first-party scripts from third-party scripts is not 100%
accurate. First, the domain substring matching can be prob-
lematic if an adversary can create victim-specific subdomains.
For example, a third-party can intentionally generate a sub-
domain xyz.third-party.org by adding a new entry in its name
server. Our technique would mislabel this subdomain as a first-
party URL if it is included by xyz.com. Second, an organiza-
tion may use distinct email addresses for its subsidiaries. For
instance, the SOA email address of https://www.instagram.com/
is awsdns-hostmaster@amazon.com, whereas that of https:
//www.facebook.net/ is dns@facebook.com. We classify scripts
loaded directly from Facebook on Instagram as third-party
scripts even though Instagram is owned by Facebook. Al-
though our approach to determining the relationship between
two hosts is not complete, it is good enough for achieving
our goal and provides better results compared with a similar
approach using only whois records [4].

Measurement Scope. We visited only the main pages of
Alexa top 250K websites, so we could miss scripts that are
loaded only in their sub pages. However, our goal is to have a
preliminary understanding of the click interception problem.
We do not intend to and are not able to cover all pages and
scripts that can be found on these websites. In the future, we

954 28th USENIX Security Symposium USENIX Association

https://pndelfast.com/riYfAyTH5nYD/4869
https://torrentcounter.to/
http://cdn.adf.ly/js/link-converter.js
http://magazinweb.net/
http://ay.gy/2155800/...
xyz.third-party.org
xyz.com
https://www.instagram.com/
https://www.facebook.net/
https://www.facebook.net/

will consider sub pages of these websites to investigate the
differences between the main pages and the sub pages.
Artificial Interaction with Web Pages. OBSERVER applies
an artificial way to interact with websites, i.e., using a script
to click all the elements on a page, in order to automate the
analysis. This could be different from the normal behavior
of a real human being. Nevertheless, our goal is to collect as
much click-related data as possible in each page visit. It would
be an interesting research topic to study if developers would
write code to distinguish authentic clicks from automatically
generated ones9.
Generating Security Warnings. Click interception can di-
rect a user to an unknown URL by modifying first-party hy-
perlinks or hijacking user clicks on first-party elements. It
exploits the fact that the user cannot determine the provenance
of the URL that he or she is about to visit (unintentionally).
To protect a user from visiting potentially attacker-controlled
URLs, a possible defense is to provide the user the prove-
nance information regarding each hyperlink and click. In
particular, the browser can display a message alongside each
hyperlink about its provenance, e.g., if the associated URL
is provided by the first-party website or a third party. The
additional message needs to be unforgeable and tamper-proof
from JavaScript code, such that the adversary cannot manipu-
late such security-related data. One potential implementation
is to utilize the browser UI that is usually not accessible to
JavaScript. For example, we can display the message in the
status bar when the user hovers the mouse over a link. Sim-
ilarly, to defend against event-listener interception, we can
display an unforgeable warning message if the user hovers
over an element that is potentially intercepted by a third-party
script. However, this may cause a lot of false positives as an
event handler may not necessarily initiate a navigation upon
user click. Therefore, it might be better to show such warning
when the user actually performs the click, as [10] does. Ac-
cording to our experiment, OBSERVER introduces negligible
performance overhead on navigation. It is thus suitable to be
extended as a real-time detection tool for the end users. We
plan to extend OBSERVER by incorporating these defenses,
and conduct a user study to evaluate their effectiveness.
Ensuring Link and Click Integrity. The above defenses
require a user to make security decisions, which might not be
very effective in practice. Alternatively, we can let the browser
automatically enforce integrity policies for hyperlinks and
click event handlers. For example, an integrity policy can
specify that all first-party hyperlinks shall not be modifiable by
third-party JavaScript code. One may further specify that third-
party scripts are not allowed to control frame navigations,
although listening for user click is still permitted. Enforcing
all such policies would effectively prevent click-interception
by hyperlinks and event handlers. However, it might also

9The clicks in our experiment were generated through Selenium and are
different from those generated using JavaScript, which can be easily detected.

break the functionalities of some third-party components. To
give the user and the website administrator better control, the
polices can specify the permissions for each script, matched
by an absolute URL, a domain name, a wild card, or a secret
token, mimicking the Content Security Policy [33]. We plan to
develop and evaluate such an integrity protection mechanism
as our future work.

7 Conclusion

We have investigated the click interception problem on the
Web with a custom analysis framework developed based on
the Chromium browser. We collected data from the Alexa
top 250K websites and identified several techniques that can
be employed to intercept user clicks. We detected that 437
third-party scripts intercepted user clicks using hyperlinks,
event handlers and visual deceptions on 613 websites. We
further revealed that many third-party scripts intercept user
clicks for monetization via committing ad click fraud. In
addition, we demonstrated that click interception can lead
victim users to malicious contents. Our research sheds light
on an emerging client side threat, and highlights the need to
restrict the privilege of third-party JavaScript code.

8 Acknowledgments

The authors thank the anonymous reviewers and our shepherd,
Franziska Roesner, for their helpful suggestions and feedback
to improve the paper. This material is based on research sup-
ported by CUHK under grant 4055081. The views, findings,
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily represent the
views of CUHK.

References

[1] Devdatta Akhawe, Warren He, Zhiwei Li, Reza
Moazzezi, and Dawn Song. Clickjacking Revisited:
A Perceptual View of UI Security. In Proceedings of
the 6th USENIX Workshop on Offensive Technologies
(WOOT), 2014.

[2] Sumayah Alrwais, Christopher Dunn, Minaxi Gupta,
Alexandre Gerber, Oliver Spatscheck, and Eric Oster-
weil. Dissecting Ghost Clicks: A Tale of Ad Fraud Via
Misdirected Human Clicks. In Proceedings of the An-
nual Computer Security Applications Conference (AC-
SAC), 2012.

USENIX Association 28th USENIX Security Symposium 955

[3] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide
Balzarotti, and Christopher Kruegel. A Solution for
the Automated Detection of Clickjacking Attacks. In
Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Beijing, China, April 2010.

[4] Frank Cangialosi, Taejoong Chung, David Choffnes,
Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. Measurement and Analysis of Private
Key Sharing in the HTTPS Ecosystem. In Proceedings
of the 23rd ACM Conference on Computer and Com-
munications Security (CCS), Vienna, Austria, October
2016.

[5] Vacha Dave, Saikat Guha, and Yin Zhang. Measuring
and Fingerprinting Click-Spam in Ad Networks. In
Proceedings of the 2012 ACM SIGCOMM, Helsinki,
Finland, August 2012.

[6] Vacha Dave, Saikat Guha, and Yin Zhang. Viceroi:
Catching Click-spam in Search Ad Networks. In Pro-
ceedings of the 20th ACM Conference on Computer
and Communications Security (CCS), Berlin, Germany,
October 2013.

[7] Sevtap Duman, Kaan Onarlioglu, Ali Osman Ulusoy,
William Robertson, and Engin Kirda. TrueClick: Auto-
matically Distinguishing Trick Banners from Genuine
Download Links. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC), 2014.

[8] Google. Expanding user protections on the
web. https://blog.chromium.org/2017/11/expanding-user-
protections-on-web.html.

[9] Google. Google Ad Traffic Quality. https://www.google.
com/ads/adtrafficquality/.

[10] Lin-Shung Huang, Alexander Moshchuk, Helen J Wang,
Stuart Schecter, and Collin Jackson. Clickjacking: At-
tacks and Defenses. In Proceedings of the 21st USENIX
Security Symposium (Security), Bellevue, WA, August
2012.

[11] Luca Invernizzi, Stefano Benvenuti, Marco Cova,
Paolo Milani Comparetti, Christopher Kruegel, and Gio-
vanni Vigna. EvilSeed: A Guided Approach to Finding
Malicious Web Pages. In Proceedings of the 33rd IEEE
Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2012.

[12] Ari Juels, Sid Stamm, and Markus Jakobsson. Com-
bating Click Fraud via Premium Clicks. In Proceed-
ings of the 16th USENIX Security Symposium (Security),
Boston, MA, August 2007.

[13] Alexandros Kapravelos, Yan Shoshitaishvili, Marco
Cova, Christopher Kruegel, and Giovanni Vigna. Re-
volver: An Automated Approach to the Detection of
Evasive Web-based Malware. In Proceedings of the
22nd USENIX Security Symposium (Security), Washing-
ton, DC, August 2013.

[14] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,
William Robertson, Christo Wilson, and Engin Kirda.
Thou Shalt Not Depend on Me: Analysing the Use of
Outdated JavaScript Libraries on the Web. In Proceed-
ings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February–
March 2017.

[15] Sebastian Lekies, Mario Heiderich, Dennis Appelt,
Thorsten Holz, and Martin Johns. On the Fragility and
Limitations of Current Browser-Provided Clickjacking
Protection Schemes. In Proceedings of the 6th USENIX
Workshop on Offensive Technologies (WOOT), 2012.

[16] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and
XiaoFeng Wang. Knowing Your Enemy: Understanding
and Detecting Malicious Web Advertising. In Proceed-
ings of the 19th ACM Conference on Computer and
Communications Security (CCS), Raleigh, NC, October
2012.

[17] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu.
DECAF: Detecting and Characterizing Ad Fraud in Mo-
bile Apps. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), Seattle, WA, March 2014.

[18] Ritu Lohtia, Naveen Donthu, and Edmund K Hersh-
berger. The Impact of Content and Design Elements
on Banner Advertising Click-through Rates. Journal of
Advertising Research, 43(4):410–418, 2003.

[19] Malwaretips. How to remove Web Browser Redirect
Virus (Windows Help Guide). https://malwaretips.com/
blogs/remove-browser-redirect-virus/.

[20] Mike Matthews. What MacKeeper is and why you
should remove it from your Mac, 2018. https://www.
imore.com/removing-mackeeper-your-mac.

[21] Ahmed Metwally, Divyakant Agrawal, and Amr El Ab-
badi. DETECTIVES: DETEcting Coalition hiT Infla-
tion attacks in adVertising nEtworks Streams. In Pro-
ceedings of the 16th International Conference on World
Wide Web (WWW), 2007.

[22] Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich,
and Vern Paxson. What’s Clicking What? Techniques
and Innovations of Today’s Clickbots. In International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA), 2011.

956 28th USENIX Security Symposium USENIX Association

https://blog.chromium.org/2017/11/expanding-user-protections-on-web.html
https://blog.chromium.org/2017/11/expanding-user-protections-on-web.html
https://www.google.com/ads/adtrafficquality/
https://www.google.com/ads/adtrafficquality/
https://malwaretips.com/blogs/remove-browser-redirect-virus/
https://malwaretips.com/blogs/remove-browser-redirect-virus/
https://www.imore.com/removing-mackeeper-your-mac
https://www.imore.com/removing-mackeeper-your-mac

[23] Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You Are
What You Include: Large-scale Evaluation of Remote
JavaScript Inclusions. In Proceedings of the 19th ACM
Conference on Computer and Communications Security
(CCS), Raleigh, NC, October 2012.

[24] Nick Nikiforakis, Federico Maggi, Gianluca Stringhini,
M Zubair Rafique, Wouter Joosen, Christopher Kruegel,
Frank Piessens, Giovanni Vigna, and Stefano Zanero.
Stranger Danger: Exploring the Ecosystem of Ad-based
URL Shortening Services. In Proceedings of the 21st In-
ternational World Wide Web Conference (WWW), Seoul,
Korea, April 2011.

[25] Erlend Oftedal. Retire.js: What your require you must
also retire. https://retirejs.github.io/retire.js/.

[26] OWASP. Clickjacking. https://www.owasp.org/index.php/
Clickjacking.

[27] Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko,
Saikat Guha, Damon McCoy, Vern Paxson, Stefan Sav-
age, and Geoffrey M. Voelker. Characterizing Large-
Scale Click Fraud in ZeroAccess. In Proceedings of
the 21st ACM Conference on Computer and Communi-
cations Security (CCS), Scottsdale, Arizona, November
2014.

[28] M. Zubair Rafique, Tom Van Goethem, Wouter Joosen,
Christophe Huygens, and Nick Nikiforakis. It’s Free
for a Reason: Exploring the Ecosystem of Free Live
Streaming Services. In Proceedings of the 2016 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2016.

[29] David Ross and Tobias Gondrom. HTTP Header Field
X-Frame-Options. Technical report, 2013.

[30] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin
Jackson. Busting Frame Busting: a Study of Clickjack-
ing Vulnerabilities at Popular Sites. In Proceedings of
the IEEE Web 2.0 Security and Privacy (W2SP), 2010.

[31] Sid Stamm, Brandon Sterne, and Gervase Markham.
Reining in the Web with Content Security Policy. In
Proceedings of the 19th International World Wide Web
Conference (WWW), Raleigh, NC, April 2010.

[32] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav
Jagpal, Alexandros Kapravelos, Damon McCoy, Anto-
nio Nappa, Vern Paxson, Paul Pearce, Niels Provos, and
Moheeb Abu Rajab. Ad Injection at Scale: Assessing
Deceptive Advertisement Modifications. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[33] W3C. Content Security Policy Level 3. https://www.w3.
org/TR/CSP3/.

[34] Wikipedia. List of DNS record types. https://en.wikipedia.
org/wiki/List_of_DNS_record_types#NS.

[35] Wikipedia. List of managed DNS providers. https://en.
wikipedia.org/wiki/List_of_managed_DNS_providers.

[36] Wikipedia. SOA record. https://en.wikipedia.org/wiki/
SOA_record.

[37] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weins-
berg, Anmol Sheth, Roberto Perdisci, and Wenke Lee.
Understanding Malvertising Through Ad-Injecting
Browser Extensions. In Proceedings of the 24th Interna-
tional World Wide Web Conference (WWW), Florence,
Italy, May 2015.

[38] Haitao Xu, Daiping Liu, Aaron Koehl, Haining Wang,
and Angelos Stavrou. Click Fraud Detection on the Ad-
vertiser Side. In Proceedings of the 19th European Sym-
posium on Research in Computer Security (ESORICS),
Wroclaw, Poland, September 2014.

[39] Apostolis Zarras, Alexandros Kapravelos, Gianluca
Stringhini, Thorsten Holz, Christopher Kruegel, and Gio-
vanni Vigna. The Dark Alleys of Madison Avenue:
Understanding Malicious Advertisements. In Proceed-
ings of the 2014 Conference on Internet Measurement
Conference (IMC), 2014.

[40] Yuchen Zhou and David Evans. Understanding and
Monitoring Embedded Web Scripts. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

USENIX Association 28th USENIX Security Symposium 957

https://retirejs.github.io/retire.js/
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://en.wikipedia.org/wiki/List_of_DNS_record_types#NS
https://en.wikipedia.org/wiki/List_of_DNS_record_types#NS
https://en.wikipedia.org/wiki/List_of_managed_DNS_providers
https://en.wikipedia.org/wiki/List_of_managed_DNS_providers
https://en.wikipedia.org/wiki/SOA_record
https://en.wikipedia.org/wiki/SOA_record

	Introduction
	Related Work
	Overview of Observer
	Threat Model
	Recording Accesses to HTML Anchor Elements
	Tracking Dynamic Element Creation
	HTML Anchor Elements
	JavaScript

	Monitoring JavaScript Event Listeners
	Implementation

	Methodology
	Data Collection
	Third-party Content Detection
	Click Interception Detection
	Interception by Hyperlinks
	Interception by Event Handlers
	Interception by Visual Deception

	Click Interception in the Wild
	Dataset
	Click Interception Techniques
	Interception by Hyperlinks
	Interception by Event Handlers
	Interception by Visual Deception
	Evasion of Detection

	Click Interception Scripts
	Third-party Scripts Characterization
	Click Interception Script Inclusion

	Click Interception Reasons and Consequences
	Monetization
	Distributing Malicious Content

	Discussion and Future Work
	Conclusion
	Acknowledgments

