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ABSTRACT
Recent advance in web tracking technologies has raised many pri-
vacy concerns. To combat users’ fear of privacy invasion, online
vendors have taken measures such as being more transparent with
users about their data use and providing options for users to man-
age their online activities. Such efforts gain users’ trust in online
vendors and improve their willingness to share their digital foot-
prints. However, there are still a significant amount of users who
actively limit involuntarily sharing of data because vendor provided
management tools only restrict the use of collected data and users
worry vendors do not have enough measures in place to protect their
privacy sensitive information.

In this paper, we propose TrackMeOrNot, a new anti-tracking
mechanism. It allows users to selectively share their online foot-
prints with vendors. With TrackMeOrNot, users are no longer
concerned with privacy. Using it, users can specify their privacy
sensitive activities and selectively disclose their activities to ven-
dors based on their specified privacy demands. We implemented
TrackMeOrNot on Chromium browser and systematically evalu-
ated its performance using a large set of test cases. We show that
TrackMeOrNot can efficiently and effectively shield privacy sensi-
tive browsing activities.

1. INTRODUCTION
Recent advance in online tracking technologies are putting an

unprecedented amount of user information into online vendors’
hands. These information are surprisingly vast, from search queries
to web browsing behavior to purchase history and more – and all
together, they can be used to predict user preference. As such, online
tracking brings many privacy concerns [20, 27].

Unarguably, online vendors are generous investors and untiring
advocates of tracking techniques. Using tracking techniques to
acquire more information about users, online vendors can improve
their conversion rates and enable their business partners to be more
economical with their advertising and marketing budgets. However,
investments in tracking techniques can be severely undermined
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if users disable tracking and refuse to share any of their online
footprints with vendors due to privacy concerns. Indeed, we have
already seen a significant growth in the adoption of anti-tracking
tools and software [23].

To combat users’ fear of privacy invasion, recent marketing re-
search [21, 26] provides online vendors with many suggestions,
such as being transparent and simple about privacy policies, build-
ing users’ trust in personal information use, and giving users options
to manage the use of their shared information. Presumably, in re-
sponse to these suggestions, online vendors take active measures.
For example, Uber summarizes their privacy policies in an easy-to-
read bulleted format that does not make users’ eyes glaze over [35].
Both Google and Yahoo provide tools that allow users to manage
their privacy sensitive data [25, 37].

While vendors taking care of privacy concerns build users’ trust
and increase users’ willingness to share information, there are still a
significant amount of users who actively limit involuntarily sharing
of data. The reason is vendor-provided tools do not prevent them
from logging a user’s privacy sensitive visits but rather restricts
how they use these data, meaning that the protection of such user’s
privacy is completely relying on vendors. Therefore, many users
concern if vendors truly have proper mechanisms in place to protect
their privacy sensitive information [19, 22, 24].

An intuitive solution to this conundrum is to provide users with a
client side tool that shares the same functions with the tool provided
by online vendors. Different from the vendor’s tool, however, the
client side solution provides users with a power, that is, only to
share information that they are comfortable with but not disclose
their privacy sensitive visits. In achieving this, this paper proposes
TrackMeOrNot, a novel anti-tracking mechanism that prevents on-
line vendors from tracking privacy sensitive visits specified by users.
More specifically, we augment conventional web browsers with the
ability to take a user’s privacy demand, and shield her browsing
activities based on her need.

Existing client side anti-tracking mechanisms completely impede
vendors’ tracking and vendors cannot obtain any information from
users. Considering that online vendors also use user data to offer
personalized online experience, these solutions can severely dis-
rupt user experience. To this end, the goal of TrackMeOrNot is
to allow users to trade the information that they are comfortable
to share for a better user experience. In order to achieve such a
goal, TrackMeOrNot has to address following two unprecedented
challenges. First, TrackMeOrNot needs to correctly understand the
semantic meaning of a web page to determine if the visit violates
user’s privacy demand (positive). TrackMeOrNot may leak many
privacy sensitive page visits to vendors with a high false negative
rate. On the other side, TrackMeOrNot may negatively affect user’s
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browsing experience if lots of false positives are triggered. Our
first challenge is how to build an efficient scheme that accurately
determines if disclosing a visit to vendors’ trackers violates a user’s
privacy demand. Second, to avoid exposing privacy sensitive page
visits to vendors’ trackers, TrackMeOrNot needs to examine if a
page visit violates the user’s privacy demand in advance of loading
the page into a web browser. Browser interception for protecting pri-
vacy can introduce unexpected overhead, and sluggish examination
can decelerate page loading and jeopardize user experience. As a re-
sult, our second challenge is how to build a lightweight interception
scheme for privacy protection.

In this paper, we address the aforementioned challenges as fol-
lows. First, we introduce an efficient approach to examine a user’s
visit and her privacy demand. This approach decouples web page
content from that of tracking parties, and excludes the unnecessary
page rendering. Second, we introduce a lightweight browser inter-
ception scheme. It reduces memory consumption by maintaining
only one additional browsing context for each browser tab. These
two contexts allow a web browser to quickly and smoothly cloak a
user’s browsing session accordingly. In summary, this paper makes
the following contributions.

• We propose a novel anti-tracking mechanism, TrackMeOrNot,
that allows users to opt out of online vendors’ trackers based
on their demand and cloak their privacy sensitive browsing
activities.

• We implement the prototype of TrackMeOrNot on open-
source Chromium browser. TrackMeOrNot transparently
supports key features of modern web browsers, including
the same-tab browsing context switch and content preloading,
both of which enables TrackMeOrNot to efficiently achieve
the anti-tracking capability at the same time preserving user
experiences.

• We thoroughly evaluate the various aspects of TrackMeOrNot.
We demonstrate its efficiency and effectiveness in shielding
privacy sensitive browsing activities. On average, TrackMeOrNot
imposed 16.40% and 3.06% page load time and memory use
overhead, respectively. In addition, TrackMeOrNot showed
0.86 accuracy in correctly satisfying user’s privacy shielding
needs.

The rest of the paper is organized as follows. §2 describes the
background and motivation. §3 and §4 describe the design and
implementation of TrackMeOrNot, respectively. §5 and §6 evaluate
TrackMeOrNot’s system performance and classification results. §7
discusses the related work, and §8 concludes the paper.

2. BACKGROUND AND MOTIVATION
An online vendor typically partners with many websites. Using a

JavaScript snippet embedded on the partner sites, it places a persis-
tent identifier (e.g., tracking cookie) on a user’s browser. Every time
a user visits a vendor’s partner site, the JavaScript snippet reports the
visit to the vendor along with the persistent identifier associated with
the user’s browser. As such, the vendor can link a user’s browsing
activities across multiple sites, build the user profile and tailor his or
her browsing experience. Figure 1 illustrates this tracking process.

Considering users may not be comfortable with disclosing all
her footprints to vendors, many vendors provide web portals that
allow users to opt out their unwanted footprints. The opt-out option
shows vendors’ respect on user privacy and have been accepted by
many users. However, there are still a significant number of users
who are concerned that vendors may not be able to properly protect

Vendor ’s
JavaScript

Vendor ’s
JavaScript

Site	  A Site	  B

Vendor
(tracker)

User	  Browser

Tracking	  
Cookie

Figure 1: Online tracking workflow. When a user visits the first party
website (i.e., either Site A or Site B), its content is delivered to the user’s
browser. To enable online tracking, this content from the first party embeds
the JavaScript code uploaded by the third party (i.e., vendor). Once the
JavaScript code is executed by the browser, the persistent tracking cookie
will be stored in the user’s browser, thereby allowing the third party to keep
track of user’s browsing activity.

their privacy footprints because the opt-out only restricts vendors to
use unwanted data rather than completely preventing vendors from
collecting unwanted data.

Existing client side anti-tracking mechanisms (e.g., disabling
third-party cookie or blocking tracking traffic) could completely
impede vendors’ tracking such that the trackers cannot collect any
information from users. While providing strong protection for users’
privacy, such mechanisms jeopardize user experience because – in
addition to yielding profits – vendors cannot tailor user’s online
experiences anymore using his or her footprints in the past.

To the best of our knowledge, none of the existing controls on web
tracking could protect users’ privacy while preserving usability. We
argue that privacy and usability do not have to be mutually exclusive
and observe the need for new anti-tracking mechanisms that could
balance between users’ demands for privacy and usability. Such
anti-tracking mechanisms should meet the following requirements:
1) user’s privacy sensitive browsing activities should not be known
to any vendors; 2) vendors should be able to collect data about
browsing activities that have been explicitly granted by the user. In
addition, any anti-tracking mechanisms should not negatively affect
user’s browsing experience (e.g., introducing acceptable overheads
such as latency, computation and memory usage).

In this work, we propose a new anti-tracking mechanism that
allows users to selectively share their browsing activities with online
trackers for better user experience while shielding their sensitive
browsing activities. We emphasize that our goal is not only to
develop algorithms that determine if a visit violates a user-specified
privacy need, but also to develop a system that can effectively and
efficiently decouple tracking identifiers from his or her privacy
sensitive visits. Our proposed anti-tracking mechanism is mainly
used for defending against stateful tracking techniques [28], such as
HTTP cookies and supercookies. But, it can also be further extended
with stateless tracking defense techniques, e.g., avoiding browser
fingerprinting [5].

3. DESIGN
In this section, we present our design of TrackMeOrNot to sup-

port fine-grained content aware control on first-party and third-party
web tracking.

3.1 Overview
As is described in §2, users have different and unique track-

ing privacy needs to online web tracking. To this end, we design
TrackMeOrNot and depict its overall workflow in Figure 2. In order
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Figure 2: The overall workflow of TrackMeOrNot, where each component
of TrackMeOrNot is represented as a gray box: 1 a user tries to visit a
website, Site A; 2 Site A sends a response to a user, and TrackMeOrNot
intercepts this response and forwards it to the content analysis engine; 3 the
result of content analysis engine (i.e., the content semantics) and tracking
preference policy are forwarded to the tracking preference checker; 4
TrackMeOrNot switches the browsing context only if required.

to balance between such privacy needs and usability, TrackMeOrNot
employs a tracking preference policy, in which users can easily
specify their own privacy needs regarding online tracking (§3.2).
TrackMeOrNot separates user’s sensitive browsing activities from
user’s normal browsing activities by leveraging isolated browsing
context, which consists of all local states (e.g., cache, cookie jar,
local storage, etc.) associated with one browser instance. All nav-
igation in TrackMeOrNot starts with an anonymous and transient
browsing context. During the web navigation, TrackMeOrNot ana-
lyzes the semantic meaning of the target web contents (§3.3) to inter-
polate its analysis results with a privacy policy. Then TrackMeOrNot
leverages such learned information to determine which browsing
context (persistent or anonymous) it should be running to meet the
user’s tracking preference policy (§3.4). Finally, TrackMeOrNot
carries out seamless browsing context switch based on the switching
decision (§3.5).

3.2 Tracking Preference Policy
Following the general and well-known beliefs in user’s privacy

protection, TrackMeOrNot allows users to specify their privacy
needs on their own. These privacy needs in general can be ex-
pressed with the well known access control concepts, blacklists
and whitelists. Leveraging these basic schemes, TrackMeOrNot
introduces two different types of protection entities, web content
category and domain name. Web content category offers the capa-
bility to specify user’s privacy needs from a bag of category words.
For example, a user can enlist the category drug into the blacklist
of the web content category, if the user wants to hide the fact that
she or he has browsed a web page related to drugs. On the other
hand, drug can be whitelisted if the user does not feel those contents
are privacy sensitive and thus wants to receive useful services based
on those contents (e.g., targeted advertisements from third parties).
Moreover, the other protection entity, domain name, allows users
to easily specify their privacy needs using the domain name itself.
For example, a user can whitelist cnn.com, if she/he believes the
contents offered by cnn.com are not privacy sensitive and thus allow
all third-party trackers loaded on cnn.com to trace her/his visits.

Similar to access control systems, TrackMeOrNot also defines
override rules on privacy policies. A user could assign a high priority
to a whitelist rule so that TrackMeOrNot disregards blacklist rules
with lower priorities if the whitelist rule is ever matched. If two
rules share the same priority, a blacklist rule always precedes a
whitelist rule. TrackMeOrNot supports the following three custom

1 {
2 "category-blacklist": {
3 "drugs": "high"
4 },
5 "category-whitelist": {
6 "sports": "low"
7 },
8 "domain-blacklist": {
9 "aaa.com": "medium"

10 },
11 "domain-whitelist": {
12 "bbb.com": "medium"
13 },
14 "fallback browsing mode": {
15 "anonymous"
16 }
17 }

Figure 3: tracking preference policy for TrackMeOrNot. TrackMeOrNot
uses universal and simple JSON format so that it can be supported from
many different platforms.

priorities for each policy rule that users can specify: high, medium,
and low, where high and low indicate the highest and lowest priority
respectively. For example, suppose the user specified drug as a
category blacklist rule with a medium priority and cnn.com as a
domain whitelist rule with high priority, TrackMeOrNot will first
apply the policy on cnn.com and then disregard the policy on drug
if the policy on cnn.com is matched. By default, all rules have the
same priority (medium) if the user does not define explicitly.

Furthermore, users can specify a fallback browsing mode, which
specifies which browsing context would be used in case none of
the policies are matched. A privacy conscious user may select
anonymous as her or his fallback browsing mode and specify only
a few web content categories and domains as whitelist rules. On
the other side, a user who is more concerned with usability (e.g.,
the quality of personalization service) may use normal as her or his
fallback browsing mode and enlist those categories and domains
that she or he determines as sensitive into blacklist. We note that
how a user defines her or his tracking preference policy impacts the
performance of TrackMeOrNot as we will discuss in §6.

Figure 3 depicts an example of the privacy preference policy that
TrackMeOrNot accepts. Each protection entry (i.e., either category
or domain) has both blacklist and whitelist policies. In each policy,
the protection entity and priority are specified as a key/value pair.
Moreover, a fallback browsing mode is specified as anonymous in
this example, meaning that the anonymous browsing context would
be used as the fallback mode.

3.3 Content Analysis Engine
In order to determine whether a target website that a user is

visiting is against any blacklist policies, TrackMeOrNot intercepts
web navigation processes to analyze web contents that the browser
receives and renders. In particular, TrackMeOrNot first intercepts
all the network responses from the first party, and then it starts the
content analysis with the built-in machine learning classifiers to
obtain the representative category of the responses.
TrackMeOrNot collects all the network responses by intercept-

ing the browser’s event on completing the fetching of a resource.
TrackMeOrNot particularly focuses on collecting the responses only
from the first party for the following reasons. First of all, most of the
content semantics are delivered by the first party (i.e., the third party
mostly delivers external data including images, tracking scripts, or
advertisements), and these semantics are what users are concerned
about from the privacy point of view. Furthermore, it would re-
quire too much analysis time if TrackMeOrNot also considers the
resources from the third party as well because the loading of third
party resources can take quite long time. Again, the resources from
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the third party are mostly related to external data, which usually
have a significantly bigger size than those from the first party.

Once such an event is fired, TrackMeOrNot forwards the cor-
responding response contents to a content analysis engine. The
analysis engine first parses responses using its own HTML parser.
Since the HTML parser provided by the underlying browser aims
at rendering the complete web page from the responses, it is not
designed to parse incomplete responses. Thus, TrackMeOrNot im-
plements a custom HTML parser, which is capable of handling
such incomplete responses and focuses on extracting text semantics.
Specifically, this parser constructs the DOM tree without sending
new network requests nor evaluating JavaScript and Cascading Style
Sheet, each of which is not related to the content semantics. Next,
TrackMeOrNot scans the DOM tree and extracts texts from it. Non-
content texts (i.e., navigation links and advertisements) are excluded
from the final result as those are not related to the real content
semantics.
TrackMeOrNot then utilizes pre-built machine learning classi-

fiers to summarize the extracted text contents. For example, a classi-
fier may predict the likelihood that the current web page contains
pornography content. Another classifier may predict whether the
web page is about education. The summarized classification results
(probabilities) are then sent to the central controller for checking
with user tracking preference, which we describe in the next subsec-
tion. If the built-in machine learning classifiers are not satisfactory
to some users, they could also select some free online classification
services for processing their navigation request before the naviga-
tion request is sent in TrackMeOrNot. The correct browsing context
could be directly decided after checking the returned results with
user privacy preference. However, the users have to build their pri-
vacy protection on trust of the third party service providers and may
suffer from unpredictable browsing latency.

While the content analysis engine is processing the content seman-
tics, the page loading process is not blocked so that TrackMeOrNot
introduces minimum overhead in page load time if TrackMeOrNot
does not switch the browsing context.

3.4 Tracking Preference Checker
Once the content analysis is finished, TrackMeOrNot checks

the privacy sensitivity of the target website. In other words, using
the tracking preference policies and the target website’s content
semantics, TrackMeOrNot determines whether it needs to keep
using anonymous browsing context to prevent tracking or to switch
to persistent browsing context to augment usability.

As described in §3.2, TrackMeOrNot checks each policy rule in
the order of associated priority. For example, suppose a user speci-
fied drugs in category blacklist as depicted in Figure 3. And further
suppose that the content analysis engine returned the target website
has the semantics, drugs. In this case, TrackMeOrNot determines
that the browsing context does not need to be changed. However,
if drugs were specified in category whitelist, TrackMeOrNot will
switch to the persistent browsing context, which we describe in
detail in the next section.

3.5 Browsing Context Switch
Based on the current browsing context and the decision made after

checking user’s tracking preference, TrackMeOrNot may switch to
the persistent browsing context for the current navigation request.
If a browsing context switch is not needed, TrackMeOrNot simply
does nothing, meaning that the browsing context would be stayed
in the anonymous one. Otherwise, TrackMeOrNot terminates the
current pending navigation originated from the initial anonymous

browsing context, and restarts the navigation with the persistent
browsing context.
TrackMeOrNot will also mark the new navigation request so

that it will not be intercepted again. Since the machine learning
classifiers cannot be 100% accurate, sometimes TrackMeOrNot
may switch to a browsing context that the user does not want. In this
case, the user could manually switch back to the correct browsing
context.

3.6 Discussion
By isolating privacy sensitive browsing activities in anonymous

browsing contexts, TrackMeOrNot effectively prevents online ven-
dors from linking those activities with a user’s persistent profile.
However, a user may still feel unsafe because other non-local state
features may be used to track the user’s browsing activities as well.
For example, stateless fingerprinting does not use any local states
of a browsing context to identify a browser instance. Such stateless
tracking threat has already been addressed in [29]. The solutions
could be integrated with TrackMeOrNot by generating a tempo-
rary fingerprint when using the temporary browsing context. IP
anonymity technologies [16] could similarly be integrated with
TrackMeOrNot to defend against IP address based tracking.

Another limitation of TrackMeOrNot is that in an anonymous
browsing context TrackMeOrNot is not able to extract the content
of a few websites that only provide services after the user has logged
in. For example, Facebook does not provide its service if the user
does not sign in with her or his account. As a result, the user has
to explicitly specify a whitelist rule for Facebook if the user wants
to use its service, or the user needs to log in her/his account of
Facebook in the anonymous browsing context as well. The current
design of TrackMeOrNot may also allow user’s browsing activities
on websites like Facebook to be tracked by other third-party trackers,
if Facebook and other websites explicitly embed tracking scripts of
other vendors into their own websites. However, such behavior is
essentially the same as directly sharing first party data with third
party trackers, which cannot be prevented if the user has agreed with
the terms and conditions of these websites that explicitly indicate
that user data will be shared with third-parties.

4. IMPLEMENTATION
To demonstrate the feasibility and effectiveness of TrackMeOrNot,

we implemented a prototype of TrackMeOrNot based on one of the
most popular modern browsers, Chromium (version 45.0.2426.3).
Although we only implemented a prototype on Chromium, the de-
sign of TrackMeOrNot is generic and can be easily extended to
other browser platforms. In terms of implementation complexity,
the Chromium version of TrackMeOrNot introduced 1,400 new
lines of code (200 LoC for navigation interception, 700 LoC for con-
tent analysis engine, 500 LoC for tracking preference and browsing
context switching) to Chromium.

In the rest of this section, we first introduce the general ar-
chitectural design of the Chromium browser, and then describe
how each component of TrackMeOrNot is implemented along with
Chromium’s design.

4.1 Chromium Browser’s Architecture
Chromium uses a multi-process architecture [11] to utilize process-

level isolation between the browser process and the renderer process.
The browser process of Chromium is the main process that manages
UI, I/O, tabs, configuration, etc. The renderer process renders the
web page using the WebKit layout engine, and multiple renderer
processes are associated with and controlled by the browser process.
At the time of creation, the browser process and renderer processes
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are strictly bound with a certain browsing context (either persistent
or temporary browsing context), and the current design does not
allow to switch between them after being created.

4.2 Tracking Preference Policy
TrackMeOrNot’s tracking preference policy leverages existing

preference system in Chromium [13], which is managed by the
browser process. While TrackMeOrNot internally reuses Chromium’s
preference system, it also provides an interface for users to easily
configure her/his tracking preference through Chromium’s browser
setting interface itself (i.e., we added the Tracking section into the
Content settings option of Chromium’s Privacy setting). This
tracking preference is loaded into a browser process when the
Chromium browser is launched, and will be used later to enforce
tracking policy based on the content analysis results.

4.3 Content Analysis Engine
The content analysis engine is implemented inside WebKit in

the renderer process. We intercept each navigation request inside
the WebKit layout engine. In our current design, we only intercept
network responses of first-party contents in the ResourceFetcher, as
is discussed in §3.3. The network requests for third-party contents
are temporarily held inside the DOM parser of WebKit when a new
navigation starts. The hold is released when the renderer receives
a notification from the browser process, or is terminated with the
navigation request if the browser process switches to a different
renderer process with a different browsing context. If a new renderer
process is selected for restarting the navigation, the browser process
will set a flag in that renderer process so that the new navigation
request will not be intercepted again.

In order to understand the semantic meaning of a web page,
TrackMeOrNot needs to parse the corresponding HTML source and
extract the content from it. However, the DOM parser of WebKit
might be blocked by network requests that are held [36], so that we
are not able to extract all the text contents with the DOM parser.
To overcome this problem, we implemented a lightweight DOM
parser with the libxml2 library [17]. Our DOM parser creates the
DOM tree from the HTML source without loading new resources
and evaluating JavaScript and CSS. After the DOM tree is built, we
extract all the text on the web page. However, the extracted text may
contain many non-content text, such as navigation links, copyright
disclaimer, or advertisements. Such non-content text may introduce
noise in the classification procedure. We implemented the CETD
algorithm [34] inside WebKit to further remove non-content text.

A key feature of TrackMeOrNot is to use machine learning algo-
rithms for content analysis. While there are many online classifi-
cation web services, we decided to implement local classification
models for privacy and performance concerns that have been dis-
cussed in §3. Due to the diversity of web pages on the Internet
today, we had to train the machine learning models with a large set
of diverse web pages. However, to the best of our knowledge none
of the widely used web page classification benchmark data sets [32]
could meet our requirement because they either contain very few
documents that are not diverse enough or use coarse-grained labels.
We eventually selected the well known AOL query logs [31] for
training our classification models. The AOL query logs include 21
million search queries from 650k real users. The logs also contain
over 19 million user click-through events of 1.6 million unique web
pages, which had been visited by real users and represent diverse
human interests. Some sensitive contents that people generally do
not want to be tracked (e.g., pornography) are also included in the
data set.

Although the AOL data set is a good fit for our study, unlike other
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Figure 4: The ROC AUC score distribution of binary classifiers.

web classification data sets the AOL data set is not labeled. It is
impractical to manually label all the URLs in the data set. We used
the natural language processing API of AlchemyAPI [14] to label
the English web pages that were still accessible in September 2015.
Each web page was pre-processed with the CETD algorithm to
remove non-content text before calling the API. AlchemyAPI classi-
fies each web page into topic category up to five levels deep [15].
In total, we were able to label 369,179 web pages with the support
from AlchemyAPI 1.

Since some categories have much more web pages compared with
other categories, we further broke down web pages in these popular
categories into their second level category. For example, “art and
entertainment” web pages were further broken into “books and
literature”, “movies and TV”, “music”, “shows and events”, “visual
art and design” and “arts/other”. We also manually selected all
(second level) categories that are generally considered as sensitive,
i.e., “finance”, “health and fitness/{disease, disorders, drugs}”, “law,
govt and politics/{armed forces, government, law enforcement, legal
issues}”, “society/{crime, dating, sex}”. Eventually, we got 78
categories in our data set. This labeled AOL data set was also used
in our evaluation of TrackMeOrNot in §6.

For each of the 78 categories, we built a binary classification
model using Linear SVC. The term frequency-inverse document
frequency (tf-idf) of each term in the extracted text is used as feature.
All the web pages in a given category are positive samples. Equiv-
alent number of randomly selected web pages of other categories
are negative samples. The positive samples and negative samples
were randomly and evenly split into a training set and a test set. We
used 10-fold cross validation in the training set to learn the best pa-
rameters for each category, and used the test set for evaluation. The
distribution of the ROC AUC scores of the 78 categories are shown
in Figure 4. The minimum, mean, maximum, and standard deviation
of ROC AUC scores are 0.84, 0.92, 0.99, 0.03, respectively.

The prediction methods of the trained models are implemented
inside WebKit. For each navigation request, the extracted text is
evaluated with all the classification models. The prediction confi-
dence (decision function in the case of LinearSVC) of each binary
classifier is gathered to select the best label(s) for the web page. In
our implementation, the label of the classification model that pre-
dicts positive class with highest confidence is assigned to the web
page. The final prediction result is then sent back to the browser pro-
cess for tracking preference check. Since the topic of web pages is
very subjective, we plan to enable the users to use their customized
classifiers for their own need in the future.

1We would like to thank AlchemyAPI for granting us special aca-
demic license in this study.
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4.4 Tracking Preference Checker
Given the content analysis result returned from the renderer pro-

cess and the user specified tracking preference, this phase deter-
mines whether the current navigation leads to content that is privacy
sensitive to the user. Based on the result, TrackMeOrNot decides
whether to switch the browsing context or not. This decision proce-
dural follows the algorithm as illustrated in §3.2. If TrackMeOrNot
determines that the browsing context should not be switched (i.e.,
keep using the anonymous browsing context), TrackMeOrNot no-
tifies the corresponding renderer process to continue rendering the
current web page and does not perform any additional operations
because the renderer process is already handling the navigation us-
ing the anonymous browsing context. On the other hand, if it has
to switch to the persistent browsing context, then TrackMeOrNot
will terminate the current navigation request that is being processed
in the renderer process and then switch the browsing context as we
describe more details in the next subsection.

4.5 Seamless Browsing Context Switch
In Chromium, one browser process is bound with one fixed brows-

ing context. As a result, tabs of different browsing contexts (users)
cannot be merged within one browser window. A naive implemen-
tation of TrackMeOrNot will pop-up a new browser window each
time the browsing context is switched, which is very annoying to
users. To preserve good user experience, we break the binding be-
tween one browsing context and one browser process in Chromium.
TrackMeOrNot allows one browser process to be associated with
multiple browsing contexts so that the browser process could create
and manage renderer processes with different browsing contexts. All
browsing context switching in our implementation are seamlessly
done in the same browser tab without annoying the users. To make
the browsing context switching transparent to the users, we also
switch the theme of the browser UI when switching the browsing
context so that the user could easily tell which browsing context
she/he is browsing with. If the user ever wants to use a different
browsing context for a navigation, she/he could click a “switch” but-
ton on the navigation bar to manually switch the browsing context.

5. SYSTEM PERFORMANCE EVALUATION
In this section, we present the system performance evaluation of

TrackMeOrNot. A vanilla build of Chromium (version 45.0.2426.3)
was used as the baseline system for comparison. We measured the
web page load time and peak memory usage of the two browsers
to show the impact of TrackMeOrNot on browser performance and
user experience. All experiments were run on Debian Jessie (Linux
Kernel 3.16) with a quad-core 3.20 GHz CPU (Intel Xeon W3565)
and 24 GB RAM.

We selected the Alexa top 100 US websites as the data set for
system performance evaluation. Specifically, the two browsers (i.e.,
the vanilla Chromium and TrackMeOrNot) sequentially visited the
main page of the top 100 websites three times. Note that some
top websites (e.g., googleusercontent.com) can not be directly
visited from the browser. Thus, we selected the next top websites to
fill the places of such websites. We report the average of the three
measurements in all the following results.

Depending on the user tracking preference and the web page
the user is navigating to, TrackMeOrNot can exhibit two different
browsing behaviors: 1) staying in anonymous browsing context; and
2) switching to persistent browsing context. Intuitively, switching
to persistent browsing context in the navigation would impose more
runtime overheads in terms of both page load time and memory
usage. To clearly understand how much more overheads are imposed
in TrackMeOrNot, we configured two user tracking preferences for

each of the web page to instruct TrackMeOrNot to either stay in the
current browsing context (Content Analysis Only Configuration, or
CAOC) or switch to a different browsing context (Browsing Context
Switching Configuration, or BCSC) in the three visits.

5.1 Page load time
Regardless of user tracking preferences, TrackMeOrNot has to al-

ways perform content analysis and tracking preference check, which
would result in navigation latency. Additionally, TrackMeOrNot
may reload the web page using a different browsing context based
on the result of tracking preference check that further extends the
page load time. In order to precisely measure such extra latency, we
first implemented internal hooks in various critical event handlers
in Chromium (e.g., page load completion event), each of which
measures a clock in nano-second precision using clock_gettime().

Figure 5 and Figure 6 present the result of main page navigation in
case of CAOC and BCSC, respectively. The page load time overhead
is the ratio of the extra load time introduced by TrackMeOrNot to
the complete page load time using the vanilla Chromium.

When configured with CAOC, TrackMeOrNot introduced neg-
ligible extra latency - 0% to 10% overhead in the page load time
with 1.93% as mean and 1.81% as standard deviation. We believe
the content analysis engine of TrackMeOrNot is very efficient and
would not disrupt the user’s navigation experience in practice for the
CAOC case, because minimum, average, maximum and standard
deviation of extra processing time were only 1.00 ms, 39.56 ms,
232.00 ms and 37.40 ms, respectively.

When configured with BCSC, TrackMeOrNot needs to restart the
navigation with the persistent browsing context, thereby incurring
more latency to page load time. From our evaluation, the over-
head varied significantly: the minimum, average, median, maximum
and standard deviation of load time overhead were 1.00%, 16.40%,
13.00%, 54.00% and 12.92%, respectively. The extra load time (min-
imum: 51.00 ms, mean: 340.33 ms, median: 228.00 ms, maximum:
2130.00 ms, standard deviation: 352.60 ms) is inconsistent with the
overhead, because the raw page load time itself using the vanilla
Chromium varied a lot. For example, the vanilla browser loaded
www.google.com using 451 ms where TrackMeOrNot spent 198
ms in resending the request to www.google.com (including content
analysis), imposing 44% (198/451) overhead in page load time. On
the other hand, TrackMeOrNot only took 148 ms to switch brows-
ing context for www.nytimes.com where the complete page of
www.nytimes.com needed 5,539 ms to load using vanilla browser,
resulting in only 3% (148/5539) overhead in page load time. Con-
sidering that half of the main pages of US top 100 websites needed
more than 2,145 ms (median) to load using vanilla Chromium, we
believe the delay in page loading (median: 228 ms) caused by
TrackMeOrNot would not be observable to normal users.

To better understand the latency introduced when using BCSC,
we also recorded the time to load the main frame HTML source
using the vanilla Chromium for each web page. We present the
side-by-side comparison of main frame HTML source load time
of vanilla Chromium and extra page load time of TrackMeOrNot
in Figure 7. As is evident from the figure, the extra page load
time closely matches with the time needed for loading the HTML
source of main frame. If the full page load time is not signifi-
cantly higher than the main frame HTML source load time, then
TrackMeOrNot will lead to very high overhead in page load time.
However, TrackMeOrNot could be enhanced by caching the main
frame HTML source that is loaded in the previous browsing context
and sharing the cached HTML source with the new renderer process.
Thus no extra request needs to be sent, which could significantly
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Figure 5: Page load time when visiting each of Alexa top 100
US websites under Content Analysis Only Configuration (CAOC), i.e.,
when TrackMeOrNot does not switch the browsing context. Overall,
TrackMeOrNot imposed 39.56 ms (1.93%) extra load time on average com-
pared to vanilla Chromium.
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Figure 6: Page load time when visiting each of Alexa top 100 US web-
sites under Browsing Context Switching Configuration (BCSC), i.e., when
TrackMeOrNot performs switching to the persistent browsing context. Over-
all, TrackMeOrNot imposed 340.33 ms (16.40%) extra load time on average.
Although this extra overhead may seem significant, this would not be eas-
ily observable to users in practice due to the natural inconsistent network
latency.

reduce overhead in page load time introduced by TrackMeOrNot.
We leave this implementation optimization as our future work.

5.2 Memory
TrackMeOrNot may require more memory in runtime because it

includes 78 classification models (including a large vocabulary of
features) in our implementation. In addition, if a browsing context
switch is requested, TrackMeOrNot needs to create new renderer
process which may also increase its memory usage. For these
reasons, we measured the peak memory usage of TrackMeOrNot
and vanilla chromium for 15 seconds in each of the 3 visits to a web
page.

Figure 8 and Figure 9 show the peak memory usage of vanilla
Chromium and the extra peak memory usage of TrackMeOrNot
when visiting the main pages using Content Analysis Only Config-
uration (CAOC) and Browsing Context Switching Configuration
(BCSC), respectively. The memory overhead is the ratio of ex-
tra peak memory usage of TrackMeOrNot to the peak memory
usage of vanilla Chromium. For both configurations, the mem-
ory overheads are between -15% and 22%. The means are 3.06%

0 20 40 60 80 100
Website Rank

0

500

1000

1500

2000

2500

Ti
m

e
/m

s

Chromium Main Frame Request
Content Analysis + Context Switching

Figure 7: Main frame HTML source load time (marked as white boxes)
v.s. extra page load time in TrackMeOrNot (marked as black boxes) when
visiting each of Alexa top 100 US websites.
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Figure 8: Peak memory usage when visiting each of Alexa top 100 US web-
sites under Content Analysis Only Configuration (CAOC). TrackMeOrNot
imposed 3.06% overhead on average.

(CAOC) and 1.68% (BCSC), respectively. We observe that some-
times TrackMeOrNot consumed less memory than vanilla Chromium,
which might be attributed to that smaller dynamic contents were
loaded when using TrackMeOrNot to visit those web pages. Simi-
larly, the memory over consumed by TrackMeOrNot may also due
to the dynamics of web contents. As a result, TrackMeOrNot did
not significantly require more memory than the vanilla build.

6. ANTI-TRACKING EVALUATION
As is mentioned in §3, TrackMeOrNot allows users to specify

unwanted page visits based on web content category. Our imple-
mentation of TrackMeOrNot includes 78 classifiers for categorizing
the web pages that users visit. TrackMeOrNot compares the output
of the classification models with user specified needs and switch
a browsing session between different browsing contexts. In this
section, we demonstrate how effectively TrackMeOrNot uses the
classifiers to conceal users’ privacy sensitive visits. In particular,
we first describe our experimental design. Then, we evaluate how
effectively the classifier satisfies user’s privacy needs.

6.1 Experimental Design
To evaluate the effectiveness of TrackMeOrNot on hiding sensi-

tive web browsing activities – such as browsing pornographic web
pages and health related forums – we need to simulate a series of
web page visits and then examine if TrackMeOrNot can accurately
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Figure 9: Peak memory usage when visiting each of Alexa top 100
US websites under Browsing Context Switching Configuration (BCSC).
TrackMeOrNot imposed 1.68% overhead on average.

conceal user specified privacy sensitive visits when visiting these
web pages. As a user may specify any category of visits as privacy
sensitive browsing activities, we need a sequence of page visits
that covers all spectrums of categories. We selected web pages that
had not been used for training any classifier from the AOL data set
discussed in §4 as our evaluation web page corpus, which contains
43,807 English web pages in 78 unique categories.

To examine the effectiveness of TrackMeOrNot on hiding privacy
sensitive visits, we also need to know users’ needs to browsing
privacy. In other words, we need to know the page categories in
which a user is (or not) willing to disclose his or her visits to vendors.
To obtain the users’ needs to browsing privacy, we conducted an
online survey through Amazon Mechanical Turk. The survey was
approved by the IRB of our institute. We presented all 78 categories
to participants and asked them to choose the page categories in
which they are not comfortable to disclose their visits. In addition,
participants were asked to choose the page categories in which they
are comfortable to share their visits. Ultimately, we collected 145
valid responses. The demographic distribution of the 145 subjects is
shown in Table 1. Table 2 and Table 3 show the top categories of
web pages that users specified as blacklist rules or whitelist rules,
respectively. In other words, they represent the page categories on
which users want to hide or disclose their browsing activities from
or with online vendors. From our collected questionnaires, we found
14 participants who expressed strong privacy concern and did not
want to share any of their visits with vendors. We also observed 2
participants who stated that they were not concerned with privacy
and wanted to offer all of their footprints to vendors. Overall, we
obtained 129 unique privacy needs from all the participants.

For each unique privacy need, we encode it by converting it into
blacklist and whitelist rules as discussed in §3.2. We illustrate the
number of blacklist and whitelist rules across 129 unique privacy
needs in Figure 10. Note that, for those page categories that a
user does not specify as "comfortable to reveal" or "reluctant to
disclose", we convert them into either whitelist rules or blacklist
rules by assuming the users had specified persistent or anonymous
as their fallback browsing context, respectively. Thus, we have two
different rule sets across 129 unique privacy needs (see Figure 11
and Figure 13).

Including two special whitelist and blacklist rule pairs that indi-
cate "do not disclose any visits" and "reveal all visits", we config-
ure TrackMeOrNot using the 256 whitelist and blacklist rule pairs
shown in Figure 11 and Figure 13. Then, we simulate the visits to
the aforementioned 43,807 web pages using TrackMeOrNot. We ex-

Table 1: Distribution of demographics of survey subjects.

Age
18-24 25-34 35-44 45-54 55+

8 58 34 29 16
5.52% 40.00% 23.45% 20.00% 11.03%

Gender
Male Female

60 85
41.38% 58.62%

Education
High school or less Associates Bachelor or higher

32 25 88
22.07% 17.24% 60.69%

Table 2: The top-10 page categories in which users do not want to disclose
their visits to vendors.

Category % of votes
society/sex 78.67

finance 58.67
society/dating 58.67

health and fitness/disorders 52.67
society/crime 51.33

law, govt and politics/armed forces 50.00
law, govt and politics/legal issues 50.00

religion and spirituality 47.33
law, govt and politics/government 47.33

health and fitness/disease 47.33
law, govt and politics/law enforcement 46.00

amine the accuracy of hiding blacklist visits and disclosing whitelist
visits. In addition, we study the False Negative Rate (FNR) and
False Positive Rate (FPR) of our TrackMeOrNot. Specifically, a
page that needs to be browsed in an anonymous browsing context
is a positive sample in our evaluation. The false negative rate is the
ratio of number of false negatives (incorrectly predicted as nega-
tive) to the number of positives (including false negatives and true
positives). The false positive rate is the ratio of number of false pos-
itives (incorrectly predicted as positive) to the number of negatives
(including false positives and true negatives). The system would
mistakenly disclose many privacy sensitive visits to vendors when
the false negative rate is high. Similarly, the system may hide many
visits that the user feels OK to share with vendors when the false
positive rate is high. We present the evaluation results in the next
subsection.

6.2 Evaluation Result
Figure 12 and Figure 14 show the performance of TrackMeOrNot

in terms of accuracy, false positive rates and false negative rates
for persistent and anonymous fallback tracking preferences, respec-
tively. We observed that TrackMeOrNot achieved 0.86 accuracy in
hiding and disclosing user visits on average for both persistent and
anonymous fallback tracking preferences. The minimum accura-
cies were 0.69 and 0.74 for the two different settings, respectively,
where the maximum accuracy in both settings was 1.00. The results
indicate TrackMeOrNot can effectively cloak user specified privacy
sensitive visits and disclose a certain amount of footprints regardless
of the fallback browsing context.

We observed some interesting patterns of false positive rates and
false negative rates in regards to the number of blacklist rules in
the tracking preference. As is evident in Figure 12 and Figure 14,
the false positive rates increased when a user specified more page
categories as his or her blacklist rules. On the other side, we also
observed the decrease in false negative rates as more categories were
specified in blacklist. The reason behind these patterns are that with
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Figure 10: The number of whitelist and blacklist rules across 129 distinct privacy needs.

Table 3: The top-10 page categories in which users are comfortable to share
their visits with vendors.

Category % of votes
arts and entertainment 64.00

food and drink 54.00
hobbies and interests 50.67

sports 45.33
pets 45.33

shopping 44.00
travel 42.67

home and garden 42.67
news 42.00

education 39.33
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Figure 11: Tracking preferences using persistent fallback browsing context.

more categories that are specified as blacklist rules, TrackMeOrNot
relies on more binary classifiers to examine blacklist visits, and
consequently a web page is more likely to be classified as positive.

The average false negative rates of TrackMeOrNot were about
0.17 and 0.12 and average false positive rates were about 0.24
and 0.36 when using persistent and anonymous fallback browsing
context, respectively. As is shown in Figure 12 and Figure 14, the
false negative and false positive rates are complementary. For users
concerned more with privacy than personalized user experience,
they may configure TrackMeOrNot to achieve a low false negative
rate and a high false positive rate by specifying more blacklist rules.
In contrast, users may configure TrackMeOrNot with a high false
negative rate but a low false positive rate by trading her or his need
for privacy for better usability.
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Figure 12: Evaluation results on 129 tracking preferences with persistent
fallback browsing context.

7. RELATED WORK
In this section, we summarize various tracking technologies and

analyze existing anti-tracking mechanisms.

Defense against HTTP cookie tracking. HTTP cookie tracking is
a stateful tracking technology. It stores in a user’s browser a piece
of data (including a unique identifier) set by an online vendor while
the user is browsing a website that contains the vendor’s content.
The cookie is automatically sent to the vendor whenever the user
visits a website that contains the vendor’s content in the future. It
can be used to analyze the user’s web browsing behavior. Tracking
cookies are widely adopted by advertising networks for the purpose
of serving up "interest-based“ or "behaviorally targeted“ ads. To
stop them from tracking a person’s surfing habits, companies and
non-profit organizations (e.g.abine [1], NAI [12] and DAA [7])
implement a cookie opt-out mechanism which enables users to
block and prevent the advertising network from installing future
tracking cookies. A recent study demonstrates many drawbacks of
this approach including poor usability and unreliability [28]. As an
alternative approach, user self-help anti-tracking tools are developed
and implemented [2, 8, 33]. They defend trackers by blocking HTTP
requests to corresponding vendors. For example, Adblock plus [2]
and Ghostery [8] impede HTTP requests to advertising networks,
and thus browsers cannot report user footprints to the advertising
networks. Both cookie opt-out and self-help anti-tracking tools
are designed for defending HTTP cookie tracking. Considering a
number of online vendors have been discovered using advanced
technologies to track users [4], the effectiveness of these approaches
wanes. In this paper, our proposed anti-tracking mechanism not
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Figure 13: Tracking preferences using anonymous fallback browsing con-
text.
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Figure 14: Evaluation results on 129 tracking preferences with anonymous
fallback browsing context.

only can impede HTTP cookie tracking, but also defend many other
previously known stateful tracking technologies, e.g., supercookies.

Defense against Supercookies. Apart from HTTP cookie tracking,
another stateful tracking technology is supercookie tracking. Using
this technology, online vendors can encode a globally unique iden-
tifier – supercookies – into a web browser. For example, vendors
can abuse HTML5 local storage feature [9] or Flash Local Share
Object [10] to store a unique identifier on a user’s hard drive for
tracking the user’s digital footprints later on. To the best of our
knowledge, there are only two approaches that can be adopted to
impede such advanced tracking technologies. Private browsing [3]
is one of these approaches, which does not store any local data
that could be retrieved at a later date. Using private browsing, a
user can therefore prevent vendors from using supercookies to track
her surfing habits. Another defense against supercookies is Track-
ingFree [30], an anti-tracking browser that can impede supercookie
tracking practice by partitioning a user’s visits into multiple isola-
tion units based on URL. With this isolation, online vendors can
still store supercookies but not correlate a user’s browsing activities
across websites. One problem of this approach is that the system
overhead linearly increases when a user browses more websites
because TrackingFree maintains an isolated browser state for each
unique website and OS needs to allocate a new memory space for
each isolated browser state. Considering unexpected memory con-
sumption can potentially jeopardize user experience, our proposed
anti-tracking mechanism follows a lightweight design principle
which constructs in-memory isolation units based on browser tabs.
In addition, our proposed anti-tracking mechanism goes beyond the

aforementioned two approaches by allowing users to instruct web
browser to selectively block tracking activities. In addition to boost-
ing profits, online vendors use information collected to personalize
user experience. From the usability perspective, our anti-tracking
mechanism therefore allows users to enjoy customized browsing
experience without worrying about privacy invasion, while existing
defense restrict data sharing completely and users cannot obtain any
benefits from personalization.

Defense against Stateless Fingerprinting. Different from the state-
ful tracking technologies discussed above, a new class of web track-
ing technologies can use stateless information to identify users and
report their surfing habits. This new class of tracking technologies
neither stores nor retrieves data on user’s hard drive. Instead, it
tracks a user by learning properties of her web browser and forming
a unique or nearly unique identifier (i.e., fingerprinting) [5]. To coun-
teract such a tracking mechanism, anti-tracking technologies focus
on making browser fingerprints non-deterministic across multiple
browsing sessions [6, 18, 29]. This makes vendors difficult to link a
user’s multiple visits. For example, Nikiforakis et al. designed and
developed PriVaricator [29] that utilizes the power of browser fin-
gerprint randomization to break vendors’ ability to connect the same
fingerprint across multiple visits. Our anti-tracking mechanism is
orthogonal to defense against stateless tracking. In this paper, we
focus on building an anti-tracking mechanism that impedes stateful
tracking based on user demand.

8. CONCLUSION
In this paper, we present TrackMeOrNot, a new anti-tracking

mechanism that allows users to selectively sharing their online foot-
prints with vendors for better user experience while shielding privacy
sensitive browsing activities from online trackers. TrackMeOrNot
provides a user with two browsing contexts – anonymous and per-
sistent context – and a web browser can switch a user’s browsing
session between the contexts based on user specified privacy needs.
We demonstrate how a user can specify his or her privacy need and
employ TrackMeOrNot to surf the web without disclosing privacy
sensitive visits accordingly.

As TrackMeOrNot allows users to selectively disclose their on-
line footprints, users can enjoy personalized online experience with-
out worrying about privacy. From the perspective of online vendors,
TrackMeOrNot may persuade users overly concerned with privacy
to share footprints selectively for specific rewards, and vendors may
use shared browsing habits to yield more profits.
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