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ABSTRACT

Online advertising is one of the primary funding sources for vari-

ous of content, services, and applications on both web and mobile

platforms. Mobile in-app advertising reuses many existing web tech-

nologies under the same ad-serving model (i.e., users - publishers -

ad networks - advertisers). Nevertheless, mobile in-app advertising

is different from the traditional web advertising in many aspects.

For example, malicious app developers can generate fraudulent ad

clicks in an automated fashion, but malicious web publishers have

to launch click fraud with bots. In spite of using the same underly-

ing web infrastructure, advertising threats behave differently on

the two platforms.

Existing works have studied separately click fraud and malver-

tising in the mobile setting. However, it is unknown if there exists

a relationship between these two dominant threats. In this paper,

we present an ad collection framework – MAdLife– on Android

to capture all the in-app ad traffic generated during an ad’s entire

lifespan.MAdLife allows us to revisit both threats in a fine-grained

manner and study the relationship between them. It further enables

the exploration of other threats related to ad landing pages.

We analyzed 5.7K Android apps crawled from the Google Play

Store, and collected 83K ads and their landing pages usingMAdLife.

Similar to traditional web ads, 58K ads landed on web pages. We

discovered 37 click-fraud apps, and found that 1.49% of the 58K

ads were malicious. We also revealed a strong correlation between

fraudulent apps and malicious ads. Specifically, 15.44% of malicious

ads originated from the fraudulent apps. Conversely, 18.36% of the

ads served in the fraudulent apps were malicious, while only 1.28%

were malicious in the rest apps. This suggests that users of fraudu-

lent apps are much more (14x) likely to encounter malicious ads.

Additionally, we discovered that 243 popular JavaScript snippets

embedded by over 10% of the landing pages were malicious. Finally,

we conducted the first analysis on inappropriate mobile in-app ads.
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1 INTRODUCTION

Online digital advertising is one of the primary ways to monetize

content, services, and applications (apps) on the Internet. Compa-

nies like Google and Facebook generated 85-95% of their revenues

in Q2 2018 [1, 21] through running the largest digital advertising

platforms. Traditionally, these ad platforms, or ad networks, display

advertisements (ads) from advertisers on a publisher’s website. This

practice, known as web advertising, has generated over $35B annual

revenue in the last five years according to recent IAB reports [28].

Meanwhile, web advertising has rapidly expanded to mobile plat-

forms. Mobile advertising revenue experienced a substantial (7x)

growth from $7.1B in 2013 to $49.9B in 2017.

Mobile in-app ads are usually implemented on top of existing

web technologies by rendering HTML ads within a mobile app’s

WebView. Although sharing many underlying technologies, mobile

in-app advertising is different from the traditional web advertising.

A website includes a JavaScript snippet to display ads, whereas a

mobile app embeds a custom SDK to load the JavaScript code and

ads in a special WebView – AdView. To date, in-app ad blocking

solutions, such as DNS66
1
, DISCONNECT

2
, NoMoAds [43], and

[6], have not been widely used by mobile users. On the contrary,

blockers for traditional web ads have become very popular among

web users.

As a result, the abusive practices in web advertising, such as

click fraud and malvertising, exhibit different characteristics on
mobile platforms. First, web browsers allow ad scripts to detect

automatically generated fraudulent ad clicks. Malicious publishers

have to leverage bots to automate ad clicks, which can be easily

detected by ad networks. On the contrary, mobile users interact

with HTML ads through each app’s user interface (UI). This enables

malicious app developers to automatically generate fraudulent ad

clicks, which are difficult to detect by the restricted JavaScript

code running in the AdView. Therefore, it is easier to launch click

fraud from genuine user devices with the help of UI automation on

mobile platforms. Second, by clicking on ads, users may be brought

to malicious pages that serve drive-by download malware or scams.

In particular, drive-by downloads have been the primary form of

malvertising for web advertising [31]. On the contrary, scams are

the dominating malvertising form for mobile in-app advertising

[39].

The abusive practices in mobile advertising have been explored

by prior works. MAdFraud [15] examined click fraud in each app’s

1
https://f-droid.org/en/packages/org.jak_linux.dns66/

2
https://disconnect.me
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first/main activity by running in an emulator without UI interven-

tion. However, it did not reveal how fraudulent apps initiated auto-

matic ad clicks. Another work [39] detected malvertising cases by

collecting and scanning redirect chains using VirusTotal
3
. However,

it did not look into JavaScript code loaded from external sources,

which could be malicious. Overall, the frameworks in these works

require a time consuming app collection process. In addition, click

fraud and malvertising may happen together. These tools cannot

be used to study both threats altogether.

To overcome the above limitations, we present MAdLife, a

framework for studying mobile in-app advertising. It can record all

necessary data generated during an ad’s entire lifespan (i.e., request

→ load/render→ click→ redirect→ land) on Android. Specifically,

we customize the Android WebView to collect pre-click data. After

automatically triggering ad clicks with lightweight UI automation,

we redirect and log the post-click traffic to our data collection app.

The two datasets allow us to conduct a more fine-grained study on

click fraud and malvertising, and investigate other relevant threats

in mobile in-app advertising.

We reveal that a benign mobile ad landing page may include

malicious external JavaScript snippets. Besides, we recognize that

the public has raised concerns about the content in digital ads. For

example, political ads on Facebook are the topics of two trending

news [13, 41]. Thus, we also take a first attempt to analyze inap-

propriate mobile in-app ads. By employing several content analysis

techniques, we classify inappropriate ads into two categories: 1)

policy non-compliant [20, 24, 25, 46] ads, which do not comply

with the policies of ad networks (e.g., containing age-restricted

information); and 2) controversial ads, which are generally believed

inappropriate to some population groups (e.g., promoting online

gambling).

After selecting 5.7K from 143K apps crawled from the Play Store,

we collected 84K ads (58K landed on web pages) using MAdLife

from January to February 2018. Accordingly, ad threats were ex-

posed from several aspects. First, we detected 37 click-fraud apps

using a heuristic method. Second, 1.49% of these ads were malicious

(32 were cryptojacking ads), according to VirusTotal. Third, we

discovered a strong statistical relation between click-fraud apps

and malicious ads. On one hand, over 15.44% of malicious ads orig-

inated from those fraudulent apps. On the other hand, 18.36% of

the ads displayed by click-fraud apps were malicious, whereas in

non click-fraud apps only 1.25% of ads were malicious. Therefore,

users of click-fraud apps are much more (14x) likely to encounter

malicious ads than other users. Fourth, we discovered 243 (0.21% of

115K) popular external JavaScript snippets were unsafe. They were

included in over 10% of the landing pages in our dataset. Finally,

we identified that around 8% of landing pages were inappropriate –

7.9% did not comply with ad policies and 0.266% were controversial.

In summary, previous works treated click fraud and malvertising

as two independent mobile ad threats, and thus studied them sepa-

rately. In contrast,MAdLife allows us to study mobile ad threats

comprehensively. Therefore, researchers can have a broader view

of mobile ad threats and thus build a safer mobile ad ecosystem.

Our contributions can be summarized in threefold:

3
https://www.virustotal.com

1) We design and implementMAdLife– the first framework to

monitor an ad’s entire lifespan on the mobile platform.MAdLife

enables us to build a panoramic view of mobile ads.

2) We explore the abusive practices involved in mobile in-app

advertising, and demonstrate a strong statistical relation between

click fraud and malvertising. We discover that users of click fraud

apps are much more likely to experience malvertising.

3) We are the first to extend the research scope of analyzing

landing pages from two aspects. First, we discover that a few unsafe

external JavaScript code may occur in a great number of landing

pages. Second, we classify inappropriate ads into two categories

(i.e., policy noncompliance, and public concerns).

2 BACKGROUND

2.1 Android WebView

To display an in-app ad, Android apps are usually required to in-

clude custom ad SDKs to load the ad in an AdView. The underlying

implementations of most AdViews are based on Android’s own

WebView. While being transparent to mobile app developers and

users, the nature of the WebView component has evolved a lot

with the development of the Android OS. Since Android 4.4, the

WebView component had shifted from using the WebKit rendering

engine to sharing the same codebase with Chrome for Android.

In Android 5.0, it came out as a standalone APK, which can be

independently updated through the Play Store. Starting from An-

droid 6.0, only pre-built WebView versions were shared within the

Android Open Source Project (AOSP). Afterward in Android 7.0,

the Chrome APK was used to provide and render WebView. Re-

cently, the Safe Browsing feature has been added into WebView

with Android 8.0.

In the current Chromium source tree, WebView depends on a

C++ shared library and a source set. Within the source set, an Aw-

Contents object is implemented in C++ and further encapsulated

in Java. By adding logcat messages in function calls within Aw-

Contents, we can thus use adb to communicate with an Android

emulator and collect the custom log in real-time.

However, obtaining the ad navigation URL (the URL to visit

when clicking an ad) in Android is not straightforward, unlike web

ads loaded in a browser where developers can directly access ad

navigation URLs from the Document Object Model (DOM). As a

View object that displays web pages, WebView cannot be used

standalone without an Activity component. With UI Automation

tools, developers can access, identify, and manipulate the UI ele-

ments. However, such tools cannot directly access the DOM within

a WebView to obtain the ad navigation URL. A workaround is to

hook the AwContents class’s onTouchEvent() handler, that can

catch the touch event when a user touches an ad element rendered

in an WebView.

2.2 Mobile Advertising

Serving in-app ads is a very common approach to app monetiza-

tion for mobile publishers/developers. To earn income from mobile

in-app advertising, app developers register their apps with one or

multiple ad networks. The developers then receive a unique identi-

fier per ad slot from an ad network, and are instructed to include

its ad library, which then loads ads to the corresponding ad slots in

208



the app’s UI. While developers can choose different types of ads –

including video ads and display ads (i.e., small-size banner ads, and

full-screen interstitial ads) – to be shown within their apps, adver-
tisers on the other end purchase ad impressions and/or clicks from

the developers through the ad networks to promote their content.

Together with users viewing/clicking ads in mobile apps, all the

other players, including publishers/developers, ad networks/plat-

forms, and advertisers, form a well-functioning ecosystem in the

mobile settings [9].

However, such an ecosystem may temporarily be interrupted.

For example, when a user launches an app, the app requests an ad

for this impression from the subscribed ad network, which cannot

return an appropriate ad from its inventory for this ad request. As a

result, the user may see a void ad. The case that ads are not loaded

within the WebView is called incapable ad loading. On the other

hand, ads may not be properly displayed due to network overload

or ad networks’ back-end algorithms, which we call improper ad
rendering. To fulfill an ad request, ad syndication is created to resell

the ad impression to other partner ad networks when incapable ad

loading happens. Specifically, if the subscribed ad network cannot

find an ad from its inventory, the ad request is forwarded to syndi-

cated ad networks. Therefore, both when an ad is being loaded and

when it is clicked, communications between the app and multiple

ad networks within the ad syndication can lead to multiple redirects.
The final destination of an ad click is the landing page, which is

usually controlled by an advertiser. As for app install ads, their final
destination may end up with an app page in the Play Store.

2.3 Ad Threats

We consider the following ad-related threats in this work.

Click fraud. In order to inflate ad revenue, unscrupulous app de-

velopers use click fraud to programmatically trigger fake ad clicks.

Malvertising. Due to untrusted ad networks or unwanted redirect

chains, malvertising may lead an user to a page hosting either

drive-by downloads, scams or phishing content (e.g., pornography).

Malicious External JavaScript Code. Usually, advertisers use

JavaScript snippets to track user behaviors. However, landing pages

containing malicious external JavaScript code may expose both

security and privacy risks to end users.

Ad Inappropriateness.Ad networks normally regulate advertised

content. But untrusted advertisers can still smuggle inappropriate

ads, which can be infelicitous especially for children. That is why

Unity Ads [47] talks about COPPA [12] in its common guidelines.

2.4 Content Analysis Services

We used the following services in our ad studies.

VirusTotal aggregates over 60 malware scanners, and offers APIs

to analyze files/URLs. The rationale behind using a cluster of an-

tivirus scanners is to fight against mistaken detection by individual

scanning tools. i.e., false positives.
Google Cloud APIs

4
use REST calls to automate different work-

flows. We used the Natural Language API to understand the struc-

ture and meaning of texts in different aspects (e.g., entity analysis
and content classification). We called the Vision API to find similar

4
https://cloud.google.com/apis/

Figure 1: Workflow for data collection

images and web entities as well as detect explicit content (i.e., adult,

medical, spoof, and violence).

3 METHODOLOGY

In this section, we present the design and implementation of

MAdLife (Section 3.1), the steps we took to select our app dataset

(Section 3.2), and the statistics about our ad dataset (Section 3.3).

3.1 MAdLife

MAdLife is a data collection framework on a mobile platform for

in-app ads. It can record all necessary data generated within an

ad’s entire lifespan (i.e., request → load/render → click → redirect

→ land). Figure 1 demonstrates the workflow of MAdLife. First,

MAdLife uses the AndroidViewClient
5
tool (version 13.6.0) to

install and launch an app automatically. Afterwards, an ad is re-

turned from a remote host. Second,MAdLifemonitors the ad traffic

at the same time, and stores the pre-click data into a table in our

database. Third,MAdLife identifies and clicks the ad. Fourth, the

ad navigation URL is sent to our data collection app – Depot, which

visits the ad navigation URL and then be redirected to the landing

page. Fifth,MAdLife stores the post-click data into another table

in our database. Finally,MAdLife stops all launched activities after

the post-click data is collected. A timeout is set to stop the data

collection in case no ad is loaded/rendered.

MAdLife is designed and implemented on top of an Android

emulator – Genymotion
6
2.11. We do not select the AOSP emula-

tors and those provided by Android Studio, because apps running

in these emulator can receive only test ads with the AdMob SDK,

which is the most widely seen ad SDK on Android. Instead, our

testbed is equipped with Android 7.1 (API level 25) onGenymotion.

After installing the Play Store app, we set the “Parental Controls”

setting to the most restrictive level
7
. We take this step to ensure that

an age-restricted Play Store page would not be reached via click-

ing the ads. We will show later in Section 4.3.3 that age-restricted

5
https://github.com/dtmilano/AndroidViewClient

6
https://www.genymotion.com

7
“Apps & games”: Everyone, “Movies”: G, “TV”: C, and restrictions on: “Books” and

“Music”.
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Table 1: Our collected datasets

Pre-click Data

package name, ad size, ad

screenshot, pre-click URLs,

pre-click time

Post-click Data

Browser

screenshot of the landing page,

HTML source of the landing page,

URL redirect chain, post-click time

Play Store

screenshot of the landing page,

maturity rating

ads cannot be avoided. We enable the ARM translator on an x86

machine to run ARM apps.

In order to collect the pre-click data, we customize the Android

WebView (20 LoC in Java) to intercept a WebView’s network traffic.

This allows us to determine if WebView would be used to communi-

cate with a known ad domain. After an ad is returned from a remote

host,MAdLife saves the ad’s screenshot and logs all pre-click URLs

when several methods
8
related to ad rendering are called.

In order to collect the post-click data, each ad navigation URL is

replaced with a custom URL scheme (i.e., MAdLife://) to direct the

navigation to Depot, instead of the default mobile web browser. An

ad click is generated to let the app switch to Depot or Play Store. In

the case of switching to Depot, it takes a screenshot of the landing

page, saves its HTML source, and records the redirects if there are

any. However, it could not directly identify which app initiates

the ad click. To solve this problem, we link the pre-click data and

post-click data based on their timestamps. In the case of switching

to Play Store,MAdLife takes a screenshot of the Play Store page,

and logs the advertised app’s maturity rating (e.g., Everyone, Teen,

Mature 17+).

MAdLife can also handle special cases where some ads require

users to click on a control button or require more than one click to

trigger a redirection. In particular, almost all full-screen interstitial

ads require a click on a control button (e.g., “INSTALL”, “Visit Site”,

“Learn More”, and “Click Now”). Further, a few banner ads require

two clicks, first to display a control button and then to trigger

the redirection. In such cases, MAdLife calls AndroidViewClient’s

dump() to discover the button with keywords, and then program-

matically clicks such ads. Therefore, the record of each ad’s lifespan

consists of two parts, as shown in Table 1.

3.2 App Selection

Initially, we crawled 143K free Play Store apps in December 2016

and March 2017. Due to the fact that not all of these apps host ads, it

is not necessary to analyze the entire app dataset. Additionally, we

were not able to analyze all of them due to our limited computing

power. We decided to narrow down our analysis space by applying

an app selection procedure. Further, it is not practical to analyze

all ads displayed within one app, which requires complex UI au-

tomation. Given that the subsequent requests are similar to their

first ad-related HTTP request for 94.7% of the top 3K ad-supported

free apps [36], we focused on the apps that display ads in their first

activities.

8
Methods include loadUrl(), didFinishNavigation(), onTouchEvent(),
didFinishLoad(), didStopLoading(), shouldIgnoreNavigation(),
shouldInterceptRequest(), and loadDataWithBaseUrl().
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Figure 2: App distribution by downloads

First, we excluded any apps whose first activities do not contain

a WebView, with AndroidViewClient. We also removed apps

with multiple WebViews in their first activities, because it cannot

distinguish which WebView is clicked to generate the data. As a

result, 29.3K apps were kept.

Second, we filtered out apps that do not communicate with a

known ad domain. In particular, we constructed a list of 1,183

known ad domains
9
. Only 11.8K apps were observed to commu-

nicate with one of the domains within 15 seconds. We set this

15-second threshold, since “most apps make the first ad request

during launch time”, as observed in [36]. However, we discovered

that around 50% of the 11.8K apps did not display an ad in their

first activities. It might be possible that those requests in the first

activities were sent for tracking purposes, and the ads might be

shown in other activities.

Last, we ruled out apps that do not exhibit any change of the

current foreground activity after their only WebView is clicked,

because users are normally redirected to either a landing page or

the Play Store app after an ad click. We finally retained 5.7K apps.

Moreover, we tried also the method in [19] to identify ads by using

WebView sizes. However, more than 300 different WebView sizes in

the 11.8K apps’ first activities were identified. For example, 320x50

is a standard CSS size for mobile ads, but we also observed ad sizes

such as 320x49 and 320x51.

The selected 5.7K apps, developed by over 2.5K developers, ex-

hibit high diversity, in terms of both app categories
10

and number

of app downloads (see Figure 2). Compared with multiple statistical

results [3, 4, 44], we believe that our app dataset is unbiased.

3.3 Ad Collection

We deployed MAdLife in two locations in the United States and

one location in Canada between mid January and late February in

2018. According to MAdScope [36], even though the subsequent

ad requests are similar to their first ones, ads returned by similar

requests can be different. Therefore, in order to make sure our ad

9
https://adaway.org/hosts.txt, https://filters.adtidy.org/windows/filters/11.txt?id=11

10
The apps are in 47 categories, including one in “Dating”, four in “Casino”, and

over 300 in “Books & References”, “Education”, “Entertainment”, “Lifestyle”, “Music &

Audio”, “Personalization”, and “Tools”.
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(a) Landing page redirect (b) Overlapped red and blue ads

Figure 3: Special cases encountered during our ad collection

collection was unbiased, we crawled ads for each app in 10 runs at a

time, which took about 32-45 seconds to complete per ad. It is worth

pointing out that, MAdLife is more efficient, as it took at least 2

minutes for other frameworks [15, 37, 39] to complete a similar

task. At the end, we collected nearly 48GB of data, representing

over 84K ads.

During the ad collection phase, we encountered a great number

of special cases (e.g., “incapable ad loading”, and “improper ad ren-

dering”). Additionally, we encountered two new special situations.

First, an ad may have more than one landing page due to landing
page redirect, as shown in Figure 3(a). Such a redirection would

occur after the initial landing page is loaded in Depot. As a result,

MAdLife could collect two post-click records for that ad, but in

such cases, we retain only the final landing page as the post-click

record.

Second, the pre-click data we collected may sometimes come

from different sources. Overlapped ads, a kind of ad fraud behavior

in [32], may be the cause. For example, as shown in Figure 3(b),

a sample app may satisfy all the criteria we define in Section 3.2.

It contains a full-screen ad WebView (red) and another WebView

(blue) which is covered by the top ad WebView. The pre-click data

we collected from this app could contain both ad traffic from the

top red WebView and from the overlapped blue WebView. We are

not able to distinguish the exact WebView URLs from all the la-

beled network traffic in the pre-click data. It is a limitation of our

framework. Therefore, we only used pre-click URLs for identifying

the communications with one of the ad domains.

4 EVALUATION

In this section, we discuss about how we process our collected

initial data (Section 4.1), analyze the existing security issues for

in-app mobile ads (Section 4.2), and finally explore new threats

related to landing pages (Section 4.3).

4.1 Ad Dataset

Our pre-click data matched 133 rules of 97 ad networks in the list

of ad-related domains. For example, Leadbolt uses four different

domains (i.e., leadbolt.net, leadboltads.net, leadboltmobile.net, and
leadboltapps.net). The matched ads in our pre-click data were in 103

distinct sizes. Meanwhile, we observed Google’s ad domains (i.e.,

admob.com, and doubleclick.net) in over 90% of all ads. As for our

post-click data, we got 58,876 unique redirect chains, which totaled

203,783 unique URLs. Excluding URLs from well-known domains

(e.g., doubleclick.net, google.com, facebook.com, amazon.com, and ya-
hoo.com), we still had 56,914 URLs left for our malvertising analysis

(Section 4.2.2). The landing pages collected in Depot belonged to

nearly 3.4K distinct advertisers.

In order to conduct further analysis, we matched both pre- and

post-click data. In MAdFraud [15], the researchers used a fixed time

window to group all data generated by each Android app. However,

we were unable to apply a fixed time window, since the time of each

ad collection varied. Therefore, a heuristic strategy was devised to

match pre-click ads and their post-click landing pages. For the pre-

click data of a particular ad, its post-click data should be generated

within 45 seconds in our data collection process. Therefore, we

gradually increased the window size from 32 to 45 seconds until a

match was found. Finally, we got over 83Kmatched ads after linking

the pre- and post-click data. In particular, 25,764 ads landed directly

in the Play Store app, and 57,880 ads were directed to Depot.

4.2 Click Fraud & Malvertising

Here we revisit the two prominent ad threats. After revealing their

own trends, we further explore their interconnection.

4.2.1 Click Fraud.
In our work, we detect if an app automatically takes a user to an

ad landing page without any user click. If an app automatically

clicks an ad after the app starts, the foreground running Activity

may have already been switched to Depot, before MAdLife calls

AndroidViewClient’s dump() to collect the pre-click logs and takes a
screenshot of that ad. As a result, in the case of click fraud,MAdLife

may lose the pre-click data so that we cannot match the post-click

data with any pre-click data, or the captured screenshot in the

pre-click data may belong to the landing page instead of the ad.

Therefore, we took both situations into account. We found 1) 575

cases belonging to 356 apps without a matched pre-click data; and 2)

132 cases from 38 apps with identical screenshots of a landing page

in both the pre-click data and the post-click data. Both situations

totaled 372 unique apps. To verify the results, we repeated the

experiment over these 372 apps again. This time, only 81 apps were

flagged. We found that not all those apps performed click fraud

each time we launched them. Through our manual analysis, we

confirmed that 37 apps would always try to fabricate an ad click

automatically. In total, they were downloaded for more than 660K

times. Two of them even obtained over 100K downloads.

We compare our result with that of MAdFraud [15] in Table 2.

Both studies demonstrate that click fraud is still not a well-solved

problem. Surprisingly, one of the seven fraudulent app developers

owned 30 out of the 37 apps. VirusTotal reported that 3 apps were

benign. We further looked into their network traffic by running our

framework again. We discovered that all samples started loading
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Table 2: MAdFraud [15] vs. MAdLife (click fraud)

MAdFraud MAdLife

# Samples

130K from third-party markets

+ 35K malware

143K from Play Store

# Positive

Cases

13 from third-party markets +

3 from Play Store + 6 malware

37 from Play Store

Table 3: Rastogi et al. [39] vs.MAdLife (malvertising)

[39] (US & CN) MAdLife (US & CA)

# Samples 600K from 5 markets 5.7K from Play Store

# Collected Links 1M (US)+415K (CN) 203.7K (US & CA)

# Malicious URLs 948 (US)+1,475 (CN) 248 (US & CA)

# Unique Domains 64 (US)+139 (CN) 65 (US & CA)
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Figure 4: Statistics about different types of redirect chains

ads from three sources, of which two are the apps’ local files. The

30 apps always loaded ads starting from the same local file, which

we will explain in more detail in Section 4.2.5.

4.2.2 Malvertising.
We used VirusTotal to analyze the 56,914 URLs to determine if the

associated ads were malicious or not. We got 1,127 positive URL

cases, in which 248 were flagged by at least three scanners. We

call these cases malicious URLs. These 248 URLs belonged to 65

unique domains, and were found in 199 redirect chains. The rest

of those 1,127 URLs were flagged by one or two scanners. We call

them suspicious URLs. They belonged to 147 unique domains, and

were found in the other 669 redirect chains
11
. In summary, 1.49%

of the 57,880 ads were associated with a malicious or suspicious

redirect chain. Comparing with a study [39] in 2016 as shown in

Table 3, we detected relatively more malvertising domains (65 in

203.7K URLs vs. 64 in 1M URLs). Since we analyzed much fewer

apps and collected fewer links from in-app mobile ads, we think

that more attackers have participated in malvertising, making the

problem worse.

11
Among these 879 URLs flagged by less than three scanners, we excluded those URLs

appeared in the previously mentioned 199 redirect chains.

Table 4: Malvertising traffic from the click-fraud apps

Total Number of

Ads

Malvertising Ads by

the Click Fraud Apps

Percentage

Malicious (199) 23 11.56%

15.44%

Suspicious (669) 111 16.59%

Click Fraud (730) 134 18.36%

We looked into the results from four aspects. First, similar to the

observations in [31, 39], longer redirect chains were more likely to

be malicious. This is even more evident with our dataset. Figure 4

depicts the relations between number and length in different kinds

of redirect chains. Only two clean redirect chains with all benign

URLs had more than 10 hops. On the contrary, the length of a

malicious redirect chain can be as high as 35.

Second, only 32.16% of the malicious, and 64.87% of the suspi-

cious redirect chains had non-blank landing pages. Moreover, two of

the networks where we set our test environments installed the Palo

Alto Firewall
12

software, which blocked 26 ad clicks. We found that

14 of these 26 problematic cases were malicious, and 11 had no redi-

rections. During our ad collection process, no drive-by-download

case was encountered.

Third, we discovered 92 and 166 advertisers from the 199 mali-

cious and 669 suspicious redirect chains, respectively. We found

236 unique such advertisers in total.

Last, malicious and suspicious redirect chains were detected

from 134 and 263 apps, respectively. On the other hand, VirusTotal

detected 74 malicious apps and 133 suspicious apps in our 5.7K-app

dataset. In particular, 168 apps flagged by at least one VirusTotal

scanner were related to malvertising.

4.2.3 Correlation.

We found statistical correlations between click fraud and malver-

tising. Table 4 shows the numbers and percentages of malvertising

ads loaded by the click-fraud apps. 15.44% of the malvertising ads

were loaded by the 37 click-fraud apps. In particular, 11.56% of

and 16.59% of the malicious and suspicious redirect chains were

collected from those apps, respectively. In total, we collected 730

ads from the 37 click-fraud apps. 134 of them were either malicious

or suspicious. Therefore, the click-fraud apps have a 18.36% chance

to load malvertising ads. On the other hand, the other 734 malver-

tising cases were found in the rest 57,150 ads. The non click-fraud

apps merely had a 1.28% chance to load malvertising ads. There-

fore, users of click-fraud apps are 14.34x more likely to encounter

malicious ads compared with users of legitimate apps.

Why are the two ad-related threats correlated? Click-fraud devel-

opers may usually select ad networks with insufficient scrutiny of

illicit ad behaviors. Attackers would also spread malicious content

easily through these careless ad networks. Therefore, ad networks

should take more responsibilities (e.g., strengthening their SDKs

and scrutinizing malicious ads) to mitigate such risks.

4.2.4 Scam Cases.
Although scams have been well studied in [39], we observed new

and interesting cases. Figure 5(a) illustrates an ad for a fake anti-

virus app. No matter whether users clicked “Install” or “Cancel”, the

12
http://www.paloalto-firewalls.com
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(a) Ad with deceptive download (b) Ad with fraudulent reward

Figure 5: Scam examples

(a) Drive-by cryptomining (b) Deceptive cryptojacking

Figure 6: Cryptojacking examples

same malicious link would be visited. It revealed that ad viewers

were more likely to visit a malicious website with such a trick.

Figure 5(b) shows an unexpected prize and lottery scam, which

alleged to offer a free phone. We found two ads with the same image

in our dataset. However, these screenshots were loaded from two

different malicious domains (i.e., primerewardz.com and premium-
rewardsusa.com), with no redirections. Users should refrain from

surrendering their private information, as some scammers asked

for email addresses to send a fraudulent reward.

4.2.5 Cryptojacking Cases.
Here we show two cryptojacking instances, in which attackers

secretly mined cryptocurrency with victims’ mobile phone. While

we discovered over 25 obvious drive-by cryptomining cases, as

depicted in Figure 6(a), we also found 7 subtle examples like that in

Figure 6(b).

<script src="https :// coinhive.com/lib/coinhive.min.js"></script >
<script >

...
var miner = new CoinHive.User("...", "tt", {throttle :0});
miner.start(CoinHive.FORCE_EXCLUSIVE_TAB)

</script >

Listing 1: Drive-by cryptomining script found in Figure 6(a)

<script type="text/javascript" defer="" async="" src="https :// load
.jsecoin.com/load /.../0/0/"></script >

<iframe src="https :// claimers.io/a-mining?address =..." style="
visibility: hidden;"></iframe >

Listing 2: Two cryptomining scripts found in Figure 6(b)

The former cases, with up to 9 redirections, involving 13 different

ad domains
13
. However, all these redirections closed at one of the

two websites – rcyclmnr.com and rcyclmnrepv.com. Listing 1 shows

the coinhive
14

script used in 6(a). We submitted the embedded

JavaScript file
15

to VirusTotal, where 33 out of 58 scanners reported

this script. We later found out that our discovery was confirmed by

both Symantec [30] and Malwarebytes [40].

The latter cases included at most 2 redirections, originated

from the same domain (ezanga.com), and ended up with dropped-
click.com. A closer inspection revealed two interesting tactics used

by these attackers: 1) the website provided benign links for users to

click; and 2) the website used three different cryptomining scripts.

One example was with coinhive; whereas, two instances were with

jsecoin.com, and another two cases were with claimers.io, as shown
in Listing 2. To the best of our knowledge, we were the first to find

the claimers.io cases. According to the landing page HTML, the last

two cases were undergoing landing page redirects; therefore, we

had no further information about those web pages.

Furthermore, we looked into the issues from two aspects. First,

we examined the 49 apps where these cryptojacking samples were

found. Surprisingly, 21 of the sample apps were benign according to

VirusTotal. Thus, the malvertising cases found in these apps were

solely due to the untrusted ad networks.

Second, fraudulent app developers were involved as well. Specif-

ically, 6 apps among our revisited samples belonged to the afore-

mentioned developer, who owned 30 click-fraud apps. Our first

impression of the developer’s apps was about click fraud. After

launching any of these apps, users would sometimes be automati-

cally redirected to a landing page showing arbitrary content (e.g.,

automotive sales, lottery rewards, or pornographic chat rooms). We

found that a local file, named exit.html, was called in each of the 6

apps. Although the file was totally clean under VirusTotal, it called

the doStartAppClick() method at every app start, to automati-

cally trigger a call to visit an ad URL
16
. Ironically, this URL was also

13
Domains of the first link in a redirect chain include: leadbolt.net, tc-clicks.com, ap-

perol.com, shootmedia-hk.com, despiteracy.com, leadzuaf.com, spxtraff.com, smartof-
fer.site, bestperforming.site, mobcampaign.site, tracknet.site, topcampaign.site, and
ads.gold
14
https://coinhive.com

15
Its VirusTotal SHA-256 is 5d514880ad502302dd4bf0ef8da5d38356385d1c43689f6739f67

71ed7a4ef73

16
The URL, http://pub.reacheffect.com/ra/878/1042/p/m/%7Bcampaign_id%7D/CA, was

taken down in April, 2018
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considered benign by VirusTotal. But it served as an entry point

for redirecting users to different landing pages. After loading the

URL in a web browser, we were redirected to a couple of automatic

malware downloading pages
17
. Although on January 15th, 2018

the developer switched to other ad networks and then disabled the

auto click feature, these apps were still listed on the Play Store at

the time of this writing.

To sum up, the tricks of fraudulent app developers and of un-

trusted ad networks were continuously evolving. It was not limited

to only deceiving users but also developing new techniques to

hijack their computing power.

4.3 Other Threats

Besides the previous two well-known security issues, we look into

two new types of ad threats on a large scale: 1) malicious external

JavaScript on landing pages; and 2) inappropriate ads.

4.3.1 Data Preparation.
In order to facilitate our analysis, we removed duplicates from both

landing pages and screenshots. First, as visually-identical pages may

be developed using different HTML code, we did not use the tradi-

tional cryptographic hashing algorithm to calculate file fingerprints

to classify websites. Instead, we used the CETD algorithm [45] to ex-

tract main text content and hyperlinks from webpages. We retained

12,036 distinct documents.

Second, some landing page may include empty content. We

filtered out pictures with pure white or black background. The file

size of such images was usually less than 15KB. Further, the same

website with animated content might result in different screenshots

in two ad instances. Therefore, we consecutively employed three

image fingerprinting methods
18

(i.e., wavelet hashing, perception

hashing, and difference hashing) to group similar images. We finally

got 6,337 unique screenshots.

4.3.2 Malicious External JavaScript Code.
Advertisers may embed JavaScript code in their landing pages. Some

external JavaScript code could be malicious. However, VirusTotal

scanners would analyze only the HTML content of a page, exclud-

ing its embedded external scripts. Especially, it is very hard for

VirusTotal scanners to recognize a known malicious JavaScript

snippet after code obfuscation. As a result, the default scan setting

could potentially miss malicious content presented to users on a

landing page. Therefore, we further leveraged VirusTotal to scan

all external scripts on each landing page.

After extracting 146K unique external script URLs and distilling

115K URLs starting with HTTP(S) from almost 58K HTML files,

we found only 243 positively flagged URLs (0.21%) with VirusTotal.

Surprisingly, these scripts were used in more than 5,880 landing

pages (i.e., 10.16% of the 57,880 HTML file), or 1,384 unique landing

pages. Among these 5,880 landing pages, we discovered 53 that

were related to malvertising.

We discovered malicious external JavaScript snippets loaded

from both the first-party hosts and the third-party hosts. For ex-

ample, a “benign” landing page included more than 41 positively

17
Their VirusTotal SHA-256’s are 0c6e40eb1c3b00de1c72f22dec5cffddc3df66672360f79d5

4d9922c018f4aa6 and 1654cf25365332198c84f7e1e17b237abf0447a97e18800cc349e91cc2eb9a71

18
https://github.com/JohannesBuchner/imagehash

Table 5: Top 10 domains with positively flagged URLs

# Occurrences # Unique URL(s) Domain

409 6 gstatic.com

287 4 ytimg.com

84 1 adroll.com

64 1 engagio.com

50 1 parastorage.com

44 1 bootstrapcdn.com

18 1 bkrtx.com

14 1 googleapis.com

13 1 roberthalfgcs.com

10 1 ucarecdn.com

flagged scripts from its own host. In other words, illicit advertisers

may avoid traditional scrutiny techniques using such tricks. On the

other hand, third-party scripts are dynamically loaded and can be

updated without the control of the landing pages. Interestingly, we

discovered that a few snippets fromGoogle-registered domains (e.g.,

gstatic.com, and ytimg.com) were also positively flagged. Table 5

shows the statistics of the positively flagged JavaScript URLs.

4.3.3 Ad Inappropriateness.
The issue of inappropriate ads on the Internet has existed for a long

time but has not yet been fully explored. Legislatures in the United

States have written various acts (e.g., COPPA [12], CIPA [11]) to

safeguard children online, including from advertising. In addition,

well-known ad companies [20, 23–25, 46] also established content

policies for advertisers. But, self regulation is not enough. We took

the first step to analyze and classify inappropriate ad content on a

large scale.

We used the Google Cloud Natural Language API to get known
entities and content categories. After identifying documents with

the same known entities, we reduced duplicate files with a list of

the same entities from 12,036 to 7,067. These documents contained

all 27 level-1 categories
19
. We selected a few sensitive categories

(i.e., Adult, and Sensitive Subjects) for our analysis. Afterwards, we

used known entities to recursively select other sensitive categories.

Determining the inappropriateness of an ad could be very sub-

jective. Therefore, we adhered to the following guidelines based on

ad network policies and public opinion to identify inappropriate

ads. First, AdWords did not allow “collecting personal information

from children under 13 or targeting interest content to children

under the age of 13” [25]. Thus, we listed all ads related to age-

restricted content. Second, well-known ad networks [17, 18, 22]

announced their plan of blocking cryptocurrency-related ads, one

after another, as the content is often associated with deception

and fraud [38]. Thereafter, we labeled all related ads. Third, due

to Russian agents-used political ads and the Cambridge Analytica

scandal, Facebook received criticism and modified its policy for

political ads [5]. Therefore, we put all political ads into the “public

concerns” category. Accordingly, we classified inappropriate ads

into two severity levels:

PolicyNoncompliance: adult (e.g., pornography), criminal record,

cryptocurrency, drug (e.g., marijuana), prize (e.g., fake awards),

security (e.g., fake antivirus), store (e.g., age-restricted product)

19
https://cloud.google.com/natural-language/docs/categories
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Table 6: Inappropriate ads and their categories

Ad Category Unique Ads (#) Full Dataset (%)

P
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3
4
5
&
7
.9
%

adult 14 0.33%

criminal record 7 1.44%

cryptocurrency 146 63.49%

drug 3 0.17%

prize 46 2.43%

security 6 0.33%

store 123 31.81%
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2
4
&
0
.2
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6
%

age 2 1.30%

extramarital affair 3 0.26%

gambling 5 20.78%

health 3 5.19%

political campaign 8 33.12%

privacy 3 31.82%

Public Concerns: age (e.g., tattoo), extramarital affair (e.g.,Ashley

Madison), gambling (e.g., casino), health (e.g., plastic surgery),

political campaign (e.g., voting), privacy (e.g., phone number)

Table 6 depicts the statistics based on unique ads and total num-

ber of ads in each category. 345 out of 7,067 unique ad landing

pages are in the “Policy Noncompliance” category, and 24 are in the

“Public Concerns” category; 4,577 (7.9%) out of 57,880 ad landing

impressions are in the “Policy Noncompliance” category, and 154

(0.26%) are in the “Public Concerns” category.

We also leveraged the Google Vision API with our screenshots to

detect offensive content, extract web entities and find similar images.

We found the API performed quite well in detecting pornography.

The API was also good at finding similar images that contain very

few characters. For example, a prize wheel image with barely any

characters was flagged as potentially dangerous by the API, because

similar images were found at some malicious websites. However,

it was difficult to accurately detect any other kinds of offensive ad

content using the Vision API in general. Thus, we present only the

analysis result using the Natural Language API.

4.3.4 Case Studies.
Unlike click fraud and malvertising which affect all users, inappro-

priate ads may merely influence a specific subset of population.

Here we exemplify two cases to demonstrate the aggravating cir-

cumstances, as depicted in Figure 7. First, along with their price

volatility, cryptocurrencies attracted attention from people all over

the world. As a result, the entire industry suddenly boomed. During

our research, we collected ads of 39 different cryptocurrencies and

ads of 27 cryptocurrency-related reports from 15 online media. One

of such ads, shown in Figure 7(a), publicized its cryptocurrency for

the cannabis industry. At the time of our experiment, marijuana

was not legalized at the federal level in the United States and in

Canada [48]. Such ads should thus have been prohibited.

Second, it is even worse that nested ads can bypass all restrictions.
Figure 7(b) illustrates the landing page of a blog website, where

another ad is nested. Although ad networks can scrutinize ads and

their landing pages, their arms may not be able to reach at nested

ads. To the best of our knowledge, we do not find any policies to

(a) Controversial topics in an ad (b) Ads within an adware

Figure 7: Inappropriate ad examples

directly regulate such a situation. As a result, inappropriate ad con-

tent may be broadcasted within the landing pages that subscribe

to well-known ad networks. Moreover, we consider it as an ad-

ware, because for more than 30 FOFY landing pages we collected,

only ads were shown within the screenshots but the real content

was displayed underneath the ads. Accordingly, the situation of

inappropriate ads was getting worse.

4.3.5 Takeaways.
Our studies revealed that embedded external scripts in landing

pages should also be examined for two reasons: 1) illicit advertis-

ers might use this approach to escape from ad networks’ security

checks; and 2) third-party scripts might change their code arbitrar-

ily. Therefore, rather than checking only inappropriate ad content,

ad networks should also scrutinize the JavaScript files embedded

by advertisers. Furthermore, nested ads could be used to bypass

new content-based regulations.

Last but not the least, after Google blocked cryptocurrency ads in

June 2018 [18], we utilizedMAdLife again to crawl ads in the next

month. We did not find any cryptocurrency ad in this crawl. On the

contrary, after banning cryptocurrency ads for a few months, Face-

book granted Coinbase a privilege to allow its crypto-related ads

again in July 2018 [29]. Ad policies thus might be more inconsistent

than what people had expected.

5 DISCUSSION

Ethics. Our ad collection experiment may inflate advertisers’ bud-

gets, like other studies [7, 10, 31, 36, 39, 50]. However, we tried to

reduce the impact on the real ad ecosystem in our research. On

one hand,MAdLife clicked less than 15 ads within each app and

visited the landing page of each advertiser for less than 25 times

on average. Therefore, each individual app developer’s income and

each individual advertiser’s cost would not be significantly affected.

On the other hand, clicking ads is necessary for studying ad threats.

Although our research might have inflated the budgets of some

advertisers, our findings can benefit the whole ad ecosystem in the

long run from a broader perspective. We believe that a better ad

ecosystem will be more cost-effective for advertisers. Moreover, we
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designed our experiment in a way that MAdLife’s artificial behav-

iors can be easily detected by ad networks (i.e., 10 successive clicks

within one app and from the same IP addresses). A responsible ad

network shall be able to detect them as invalid clicks, and thus

invalidate any charges incurred to advertisers.

Limitations. First, we run the experiment on API 25 with Geny-

motion 2.11.0. Nowadays, Android 8.0 (API level 26) has enabled

safe browsing on WebView. If ad networks adapt the feature, the

malvertising issues could be somewhat mitigated. Second, our pre-

click data may contain URLs other than those we expect, since we

cannot detect WebViews underneath a full-screen WebView and

split their logcat traffic. Third, to the best of our knowledge, the

Google Cloud APIs are among the best APIs available on the market.

We have also tested APIs provided from two other services, which

did not outperform Google’s APIs. However, we cannot measure

the accuracy of Google’s APIs as we are unable to manually build

ground truth for thousands of images and web pages. Last, Google

asks that, ads displayed in family apps should be consistent with

their maturity ratings [26]. The researchers in [10] talked about this

issue. However, regardless if the parental control settings are on

or off, children are able to access all installed apps on each device.

Therefore, our studies only focused on inappropriate ads in general

instead of with age-restricted apps.

6 RELATEDWORK

Ad Collection. Due to the fact that ad content is dynamically gen-

erated, various methodologies are used to crawl ads. Collecting

online ads is relatively easy in the web settings. In online advertis-

ing, researchers can either run scripts with their add-ons [7, 31] or

build a Selenium-based crawler [50]. They can also intercept HTTP

traffic [31, 50] or harvest only ad-related visual elements [7]. Nev-

ertheless, ads’ lifespans can be easily deduced without triggering

ad clicks. Whereas in mobile advertising, researchers are still able

to analyze HTTP traffic [15, 36, 39]. But it is more difficult to track

an ad’s lifespans. For example, since no user interaction (except

for click fraud) was involved in [15], their studies stopped at ad

loading/rendering. Besides, both MAdScope [36] and the previous

work related to in-app malvertising [39] considered only events

after a touch.

Click Fraud.Ad fraud can be conducted with [2, 32] or without [15,

35] human intervention. Likewise, researchers reveal that such

attacks in web browsers [2, 35] are technically more advanced than

with handheld devices [15, 32]. While a previous work [35] depicted

two clickbot families, a work related to ghost clicks [2] traced from

an IP address back to the conspiracy with DNS hijacking. In mobile

advertising, the term can be subdivided into display fraud [32]

and click fraud [15]. Other than these, researchers in [51] detected

duplicate clicks in pay-per-click streams with two bloom filter

related algorithms.

Malvertising.Malvertising lurks at the pre-click phase, but is ex-

posed at the post-click phase. Researchers had focused on either

ad networks [50] or redirect chains [31]. Likewise, such research

works in mobile advertising result in the exploration of either ad

networks [27, 52] or redirect chains [39]. Because of ad syndica-

tion, we believe that the study of redirect chains would be more

beneficial. With the help of studies like [33], authorities would

be able to take down malvertising networks without case-by-case

investigations.

Malicious JavaScript Detection. The studies of detecting mali-

cious JavaScript code are numerous. JSAND [14] conducted clas-

sification based on static and dynamic features, and instrumented

JavaScript runtime environments to detect the execution of mali-

cious scripts. Prophiler [8] statically analyzed features of the HTML

page, of the embedded JavaScript code, and of the associated URL,

and examined malicious content on massive webpages with obfus-

cated JavaScript. Similarly, ZOZZLE [16] leveraged features asso-

ciated with JavaScript context to detect unobfuscated exploits. As

for code obfuscation, conditional code obfuscation could be used to

hinder malware analysis [42].

Content Analysis. Nowadays, contextual advertising is used to

target users. A work [49] described a feature-based keyword extrac-

tion system for online contextual advertising. In order to analyze

web content, TrackMeOrNot [34] used the Alchemy API to label

all crawled webpages, and categorized them into different topic

categories. Likewise, we used the Google Natural Language API

to analyze our dataset before applying the CETD algorithm [45]

to only encompass web content and hyperlinks. Both DECAF [32]

and SmartAds [37] captured third-party apps’ page content onWin-

dows Phone. While the former extracted page information with

the UI extraction channel, the latter instrumented app binaries to

insert custom logging code. Unlike our work that evaluates ad in-

appropriateness in general, another work [10] studied whether ads

were consistent with host apps’ maturity ratings with below 4K

ads. Also, their “topic classification” part was not well elaborated

such that we cannot make any technical comparison.

7 CONCLUSION

Although implemented on top of existing web technologies, mo-

bile in-app ads face similar threats in different forms. We devel-

oped MAdLife– a data collection framework on Android to record

all necessary data generated within an ad’s entire lifespan. Using

MAdLife, we explored the abusive practices, including click fraud,

malvertising, and other threats related to landing pages, with 58K

ads. We discovered 37 click-fraud apps and over 860 malicious

ads. More importantly, we revealed that users of click-fraud apps

were 14.34x more likely to encounter malicious ads compared with

users of legitimate apps. Further, we observed that 250 widely used

JavaScript snippets were harmful to end users. These snippets were

used on over 10% of the landing pages in our dataset. Lastly, we

identified that 8% ads were inappropriate, either not complying

with ad policies or including controversial content. We suggest

that ad networks should, and only they can, take more effective

measures to protect mobile users and themselves from ad threats.
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