
Detecting and Understanding Self-Deleting JavaScript Code
Xinzhe Wang

The Chinese University of Hong Kong
Hong Kong SAR, China

xzwang21@cse.cuhk.edu.hk

Zeyang Zhuang
The Chinese University of Hong Kong

Hong Kong SAR, China
zyzhuang22@cse.cuhk.edu.hk

Wei Meng
The Chinese University of Hong Kong

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

James Cheng
The Chinese University of Hong Kong

Hong Kong SAR, China
jcheng@cse.cuhk.edu.hk

ABSTRACT
Self-deletion is a well-known strategy frequently utilized by mal-
ware to evade detection. Recently, this technique has found its way
into client-side JavaScript code, significantly raising the complexity
of JavaScript analysis. In this work, we systematically study the
emerging client-side JavaScript self-deletion behavior on the web.
We tackle various technical challenges associated with JavaScript
dynamic analysis and introduce JSRay, a browser-based JavaScript
runtime monitoring system designed to comprehensively study
client-side script deletion. We conduct a large-scale measurement
of one million popular websites, revealing that script self-deletion
is prevalent in the real world. While our findings indicate that most
developers employ self-deletion for legitimate purposes, we also
discover that self-deletion has already been employed together with
other anti-analysis techniques for cloaking suspicious operations
in client-side JavaScript.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
JavaScript; anti-analysis techniques; web browser
ACM Reference Format:
XinzheWang, Zeyang Zhuang,WeiMeng, and James Cheng. 2024. Detecting
and Understanding Self-Deleting JavaScript Code. In Proceedings of the ACM
Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3589334.3645540

1 INTRODUCTION
As a traditional defense evasion and anti-analysis technique, self-
deletion has been widely adopted in real-world malware samples [4,
6, 13]. In the cases of a binary malware, it could delete its executable
file(s) from the system after launch at a victim host system, and keep
residing in the system’s memory to perform malicious operations.
This technique can be used to bypass some host forensic analysis
and anti-virus detections that scan the file systems and analyze the
original executables. It has been observed in the past that multiple

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05
https://doi.org/10.1145/3589334.3645540

malware families (e.g., Anchor [4] and Win32/Nemim.gen!A [13])
had adopted such anti-analysis technique to hide their malicious
activities.

The self-deletion technique is also emerging in web applications,
particularly in client-side JavaScript code. On the web, the client-
side JavaScript is embedded in the page’s HTML code or loaded
from other URLs, and parsed by and executed in the browser’s
JavaScript engine. Once a JavaScript script starts execution in the
JavaScript engine (just like a binary is loaded into the memory),
its execution becomes independent from the original source code
contained in the web page.

The basic anti-debugging technique (BADT) has been system-
atized by prior work [25]. The use of self-deletion in client-side
JavaScript can make it more difficult to study and analyze the dy-
namic behavior of the numerous scripts [17], that are widely in-
cluded in today’s websites. Nevertheless, it has been demonstrated
that state-of-the-art malware detection or analysis tools cannot suf-
ficiently detect and monitor such behaviors. Even if their behaviors
are identified, the security analysts still need great manual work to
locate the threats on the page once self-deletion is adopted.

In this work, we aim to systematically study the emerging client-
side JavaScript self-deletion behavior on the web. We want to
study the commonly used JavaScript self-deletion techniques and
help people understand the security implication of self-deleting
JavaScript code. In particular, we are interested in understanding
how common this technique is applied in the real world and why
some web developers use this technique in their code. Furthermore,
since self-deletion can naturally be applied to cloak some suspicious
or even malicious activities, we also try to investigate the connec-
tion between the uses of self-deletion and suspicious operations in
real-world JavaScript code.

We face several technical challenges in detecting and analyzing
self-deleting client-side JavaScript scripts. First, JavaScript code can
be dynamically included and even generated at runtime, making it
challenging to cover all the executed scripts and their containers.
Second, as the deletion of a script removes its container in the
Document Object Model (DOM) tree, we need to identify and map
its independent JavaScript object in the JavaScript engine. Finally,
self-deletion can be used along with other anti-analysis techniques,
such as code obfuscation, to further cloak a script’s operations.

We find the solutions of prior works [2, 14, 20] cannot satisfy our
requirements and are incomplete in some aspects. Inspired by their
methods, we develop a new browser-based JavaScript runtime mon-
itoring system—JSRay—for comprehensively studying client-side

https://doi.org/10.1145/3589334.3645540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645540

WWW ’24, May 13–17, 2024, Singapore, Singapore Xinzhe Wang, Zeyang Zhuang, Wei Meng, and James Cheng

script deletion. First, JSRay incorporates a runtime script inclusion
monitor mechanism to dynamically monitor the inclusion and exe-
cution of all JavaScript code on a page. This mechanism can help
track the origin of an included script and also construct the inclu-
sion dependency among all the scripts. Second, JSRay also includes
a runtime deletion monitoring mechanism to detect all the dynamic
script deletion operations. It can further tag the scripts running in
the JavaScript world to their corresponding containers in the page
to accurately attribute the deletions. Third, JSRay also dynamically
monitors JavaScript’s access to sensitive browser APIs for helping
study the connection between the self-deleting scripts and any sus-
picious behaviors. We implemented a prototype of JSRay on top of
the Chromium browser and release its source code [36].

We applied the prototype of JSRay in a large-scale measurement
of one-million popular websites to study the prevalence of script
deletion behaviors in the real world. Our measurement reveals that
script deletion is quite common in the real world—about 42.44%
of the websites in our dataset contained at least one dynamically
deleted script. Thesewebsites were almost uniformly ranked, i.e., we
did not observe that the more popular websites included more/less
deleted scripts. We further discover that more than half (61.39%) of
the deletions were labeled as self-deletion—the deleted script was
either removed directly by itself, or removed by a script that either
loaded it or was loaded by it. This indicates that the developers
might partition their code into separate scripts and dynamically
clean some of them.

To understand what is deleted from the page, we performed
a manual analysis of 600 randomly sampled self-deleting scripts,
together with 600 normal scripts as the baseline. We found that 92%
of self-deleting scripts were benign or legitimate scripts and the
others were involved with suspicious activities, such as accessing
and stealing user credentials, tracking user activities without user
consent, and malvertising. However, the benign rate of normal
scripts is over 99% in our baseline samples. To answer whether self-
deletion has beenwidely used for hiding some unwanted, suspicious
or evenmalicious behaviors, we leverage a popular filter list and our
sensitive API monitor to analyze self-deleting and normal scripts.
We discovered that the self-deleting scripts were 5.6x more likely
to be blocked by the list and performed 11.8x more accesses to the
sensitive browser APIs than the normal scripts, indicating that the
self-deleting scripts are more suspicious.

In summary, our paper makes the following contributions.

• We developed a browser-based JavaScript runtime monitor-
ing system—JSRay, that can comprehensively monitor dynamic
JavaScript operations.

• We are the first to systematically defined and studied self-deletion
in client-side JavaScript on the web.

• We conducted a large-scale study on one million websites. Our
results showed that self-deleting scripts are prevalent and they
could be related to suspicious operations that threaten the end
users.

2 PROBLEM STATEMENT
In this section, we describe our research scope and discuss our
research challenges.

2.1 Research Scope and Assumptions
Self-deletion means that a program deletes its binary (file) or any
other resources after it starts the execution. It can be used to bypass
host forensic analysis and has already been adopted by real-world
malware [4, 6, 13]. Self-deletion can also be used in client-side
JavaScript: a script can delete its host HTML <script> element or any
other host container (e.g., an HTML attribute) from the Document
ObjectModel (DOM) tree. Deleting the code container only detaches
the script source from the DOM tree, and the deleted script still
exists and runs in the JavaScript world.

In this work, we aim to study the use of self-deletion in JavaScript
code as an anti-analysis technique and the corresponding security
implication. We mainly study the client-side JavaScript and exclude
the JavaScript in browser extensions and non-browser applications
from our scope. We do not attempt to cover all the scripts that
can be executed only under specific conditions or events, which
has been known to be an important research problem in software
testing [11, 17]. Instead, we target the automatically executed scripts
for studying the self-deletion behaviors. This is reasonable as most
JavaScript code (inline or external) is introduced by the HTML <
script> tags, which are executed immediately when they are parsed
by the browser.

From the security perspective, we attempt to discover the con-
nection between the uses of the self-deletion technique and suspi-
cious/malicious activities. Since client-side JavaScript’s privilege
is strictly restricted by modern browser security mechanisms (e.g.,
sandbox and the SOP), traditional web attacks such as corrupting
the browser memory for control-flow hijacking are rendered al-
most infeasible. Today’s malicious scripts primarily threaten users’
privacy through exfiltrating sensitive client-side user data (e.g.,
username and password [30]) and tracking users’ online activi-
ties [19, 32]. Therefore, we consider mainly malicious scripts that
access sensitive client-side data. It is notable that detecting mali-
cious JavaScript code, which has been extensively studied by prior
work [7–10, 23, 38], is orthogonal to our research task. We do not
attempt to detect whether the self-deleting scripts are malicious
JavaScript. Rather, we aim to understand the client-side JavaScript
self-deletion technique and figure out whether the use of it is sus-
picious.

2.2 Research Challenges
We face the following challenges in detecting and studying self-
deleting scripts.

• Dynamic Code. As a dynamic programming language, client-
side JavaScript code can be dynamically loaded or generated at
runtime. It is challenging to monitor and cover all the executed
JavaScript code and its containers statically [3]. Prior work [20]
captures script inclusion relationship via only network requests.
But some dynamically loaded scripts are inline scripts that do
not have a source URL. Other work [34] uses Chrome CDP 1

to capture parsed scripts. However, it lacks information about
the DOM containers of the scripts. Therefore, a new dynamic
runtime monitoring approach would be needed.

1https://chromedevtools.github.io/devtools-protocol/

Detecting and Understanding Self-Deleting JavaScript Code WWW ’24, May 13–17, 2024, Singapore, Singapore

• Script Identification. JavaScript code can be included and
hence deleted via multiple ways in a web page. In order to de-
tect the dynamically deleted scripts, we will need to study the
different deletion techniques and monitor the relevant JavaScript
operations to identify the deleted scripts. Unfortunately, prior
works [2, 14] cannot completely track the origins and relation-
ships of all kinds of scripts. Also, how to map a JavaScript object
(asynchronously) running in the JavaScript engine to its DOM
container would be difficult, because the deleting script can delete
the container of another script instead of its own. Therefore, we
need to distinguish the script performing deletion from the one
being deleted.

• Code Obfuscation. Self-deleting scripts could be obfuscated
in order to hide their (suspicious or malicious) behaviors. Obfus-
cation makes it difficult to identify the deletion operations and
understand the other behaviors of the scripts. We need to find a
robust approach to accurately monitor the dynamic behaviors of
the obfuscated JavaScript code.

3 SCRIPT DELETION
In this section, we define different classes of script deletion opera-
tions and present the techniques for deleting a script in client-side
JavaScript. Then we discuss the security impact of the script dele-
tion techniques.

3.1 Classes of Script Deletion
Since all JavaScript code in one frame run with the same privilege
in the browser, a script can be deleted by any other script in the
same frame. Therefore, it is necessary to identify both the deleting
script and the deleted script. We will discuss in §4 our method for
identifying the deleting script and the deleted script in the browser.

Depending on the relationship of the two scripts, we can catego-
rize script deletion into four classes: 1) deletion by itself—a script
is deleted by itself; 2) deletion by ancestor—a script is deleted by
an ancestor script, which (indirectly) includes the deleted script
into the frame; 3) deletion by descendant—a script is deleted by
a descendant script, which is (indirectly) included by the deleted
script into the frame; 4) deletion by other scripts—a script is deleted
by a script that has no inclusion dependency with it.

The first three classes are quite close, because the deleting script
and the deleted script are dependent on each other. It is likely
that a developer separates his code into multiple scripts which
successively include each other into the frame and he uses one
of them to delete the other(s). In contrast, the last class is quite
different, as neither of the two scripts depend on the other. However,
it is still possible—although less likely—that both scripts are written
by the same developer and are included by the same parent script.
As a result, we cannot confidently say that the two scripts in the
fourth class are not functionally related.

3.2 Script Deletion Techniques
We present the general techniques for deleting a script from a
web frame using JavaScript. Since client-side JavaScript can be
embedded into a web page through mainly two ways, we discuss
separately the corresponding deletion techniques.

3.2.1 Deleting Host Element. Most client-side JavaScript code is
embedded in the HTML <script> elements/tags, either statically by
the first-party developer or dynamically by another included script.
Such a script can be deleted from the page by deleting its host
<script> element from the DOM tree. APIs like Element.remove(), Element
.replaceWith(node), etc. can be called to directly remove an element
from the DOM tree.

A <script> element can also be deleted by removing its parent or
ancestor element (e.g., a <div> element) from the DOM tree. Further-
more, a script can set the innerHTML property of an element (e.g., a
script’s parent element) to change its contained HTML markup.

3.2.2 Deleting Host Attribute. Client-side JavaScript code can also
be embedded within certain attributes of HTML elements as in-
line scripts. For instance, in <body onload="console.log('x');">, the string
value of the onload attribute of the <body> element would be evaluated
as JavaScript code when the load event of this element is fired. Such
an inline script can be deleted by removing or modifying its host at-
tribute. Note that these scripts may also be deleted by removing the
entire host elements (§3.2.1). We list two common types of HTML
attributes that can embed JavaScript code below.
• Inline Event Handlers. The HTML standard [37] specifies that
event handlers can be exposed as event handler content attributes.
They are also known as the "on- attributes" or the "inline event
handlers", and can be specified for event handlers on HTML
elements. JavaScript code contained within these attributes is
parsed and executed when the corresponding event handler is
invoked.

• URL Attributes. Some HTML element attributes take URLs as
values. The browser would navigate to or submit a request to
the corresponding URL under certain conditions, e.g., when a
user clicks a hyperlink ... the browser would
navigate to the URL specified in the href attribute. The URL can
be a javascript: URL, that represents a JavaScript script. When
the browser executes a javascript: URL request, it removes the
leading "javascript:" scheme string, and evaluates the rest string
in the URL as JavaScript code [37].
However, unlike the code embedded in <script> elements, the

inline scripts embedded in HTML attributes may not be executed
automatically. It would be impractical and very challenging to
trigger all such scripts [11, 17]. Thus, we target at the scripts that
are automatically executed upon page loading, e.g., the "onload"
inline event handlers of HTML elements.

3.3 Security Impact
We analyze the security impact of script self-deletion in this subsec-
tion. We first classify the self-deletion using the criteria in the prior
work [25]. Then we study two widely-used malware detection or
analysis tools to investigate current limitations. Readers can refer
to §A.1 and §A.2 for the detailed analyses.

Our analysis reveals that JavaScript self-deletion is an anti-
debugging technique that tries to prevent, or at least impede, any
attempts at (manually) inspecting and debugging the JavaScript
code on a website. Since there can be numerous scripts on one page,
inspecting the execution of a specific self-deleting script is challeng-
ing, especially when it is generated dynamically. Analysts need a
heavy work to locate the original code where the self-deleting script

WWW ’24, May 13–17, 2024, Singapore, Singapore Xinzhe Wang, Zeyang Zhuang, Wei Meng, and James Cheng

is included or generated among thousands lines of code. Unlike
static code transformation techniques, in particular obfuscation,
self-deletion affects the dynamic code analysis at runtime. Even
though the current dynamic malware analysis tools are able to
report the malicious activities observed on one website, the secu-
rity analysts still need to manually locate the real culprits among
a huge number of scripts because of the coarse-grained behavior
attribution of the current tools.

4 DETECTING SCRIPT DELETION
In this section, we present our techniques for detecting the client-
side JavaScript script deletion operations. Specifically, we develop a
browser-based JavaScript runtime monitoring system—JSRay—for
studying client-side script deletion.

4.1 Overview
We present the design and implementation of JSRay, a browser-
based JavaScript runtime monitoring system, to study client-side
script deletion. Specifically, JSRay incorporates a dynamic script
inclusion monitoring mechanism to help track the origin of an
included script (§4.2), and a runtime deletion monitoring mecha-
nism to identify the deleting script and the deleted script (§4.4).
Additionally, it also dynamically monitors JavaScript’s access to
sensitive browser APIs for helping to detect potentially suspicious
behaviors (§4.5). We decide to take a dynamic runtime monitoring
approach in our design and build a prototype of JSRay based on
Chromium (§4.6). As we had discussed in §2.2, the dynamic features
of JavaScript make it difficult to statically analyze the behavior of
individual scripts. We introduce our dynamic script monitoring
approach in detail next.

4.2 Dynamic Script Inclusion Monitoring
Since a lot of scripts can be dynamically included into a web frame,
we need to identify the inclusion relationship between scripts,
which we use to determine if a deletion operation is self-deletion
or not (§3.1). Prior work [12, 20, 33, 35] describes the inclusion re-
lationships of dynamic elements and analyzes the security problem
in inclusion chains. However, their work focuses on the inclusion
of first-party or third-party resources loaded on the page, i.e., re-
sources have specific URLs and are included on the page. But it
would also be necessary for tracking the origins of the scripts that
do not have a source URL, including the dynamically included in-
line scripts and the dynamically generated scripts via functions like
eval(). To this end, we build our own inclusion tree by changing the
browser to monitor a few important JavaScript and DOM APIs that
can be leveraged for script inclusion or script generation.

4.2.1 Scripts Embedded in Elements or Generated via eval(). First,
we identify the scripts that are dynamically included via the HTML
<script> elements by other scripts, which are their parent scripts.
Specifically, we need to monitor the script element creation APIs
to identify the parent script that is creating a new script element.
This can be done by hooking all the DOM APIs that can be used for
creating new <script> elements, such as document.createElement("script")
and document.write("<script>...</script>"), and checking the JavaScript
call stack to find the parent script, as has been demonstrated by the
prior work JSIsolate [39].

However, we take a different approach to monitoring script
creation in our research because the existing approach is incomplete.
Although JSIsolate can track the creation of new HTML <script>
elements, it cannot monitor the JavaScript code that is dynamically
generated through the eval() JavaScript function, which is not a
DOM API. For the sake of completeness, we instead modify the
JavaScript engine’s parser to monitor the calls of the JavaScript
parsing function. The JavaScript parser must be invoked when any
JavaScript code is about to be executed. Therefore, monitoring the
JavaScript parsing function would also allow us to identify the
parent script when an HTML <script> element is being dynamically
created. To identify the origin of a dynamically included inline
script element, we set its parent script’s source URL (if available)
as its origin, following the prior work [39].

4.2.2 Scripts Embedded in Attributes. Second, we identify the inline
scripts that are included via HTML attributes, including the inline
event handlers and the javascript: URLs. We could have also used
the above parser monitoring method to track the inclusion of such
scripts because it covers all executed JavaScript code. However, we
are unable to identify the parent scripts of the scripts dynamically
included via HTML attributes using this method, because such
scripts are usually not automatically executed immediately when
they are inserted into the DOM tree. In other words, the inclusion
of such scripts and their execution are asynchronous.

To track the creation of inline event handlers, we monitor the
calls of the browser’s internal event handler registration function.
This function is called whenever a new event handler is being added
in the browser. Similarly, we examine the JavaScript call stack to
locate the parent script, if any. However, the event handlers will only
be executed when the corresponding events are fired. Therefore,
we also monitor the writes to the inline event handler attributes
and record the source code for mapping the JavaScript objects to
their DOM containers, which we will discuss in §4.3.

To support javascript: URL scripts, we also monitor all the writes
to the relevant HTML attributes as JSIsolate [39]. We identify the
scripts that are setting the corresponding monitored attributes as
the parent scripts. Since an attribute could be set by multiple scripts,
we identify the parent script from the last write log.

4.3 JavaScript and DOMMapping
We need to map the JavaScript object parsed and executed in the
JavaScript world to its original container in the DOM tree, be-
cause they are managed and monitored separately and even asyn-
chronously. This would also be needed because the deletion of a
script is the removal of its container in the DOM tree instead of its
JavaScript object.

Each JavaScript object is labeled with a unique ID in the
JavaScript world; we log this script ID to identify the script. We tag
the script ID of a script to its container when the script is either
being included into the DOM tree or being parsed by the JavaScript
parser. To identify the external <script> element, we map using the
script’s source URL. To map the inline scripts, we compare the
source code parsed in the JavaScript parser with the source code
set in the corresponding element or attribute. Specifically, when
an inline script is being included, we would record in our moni-
toring code its source code obtained from the DOM tree. Since the

Detecting and Understanding Self-Deleting JavaScript Code WWW ’24, May 13–17, 2024, Singapore, Singapore

parsing of a script could be asynchronous with its inclusion into
the DOM tree, the mapping is lazily performed when the script is
being parsed. For example, the JavaScript object of an (inline) event
handler is only created when the corresponding event is fired (for
the first time); we therefore perform the mapping in the browser’s
inner event dispatching function 2.

4.4 Script Deletion Monitoring
We monitor the calls of the corresponding DOM APIs to detect the
script deletion operations, because the deletion of a script is the
removal of its code container in the DOM tree. We had discussed
the general techniques that can be used for script deletion in §3.2.
Accordingly, we hook the DOM APIs for deleting the host elements
or the host attributes from the DOM tree.

We insert dynamic monitoring code into all the DOM APIs that
can be used for element deletion. The monitoring code identifies
the target host <script> element as the deleted script, and locates the
deleting script that invokes the deletion API from the JavaScript call
stack.

To detect the deletion of the host attribute of an inline script,
we hook the DOM APIs that can be used for deleting or modifying
HTML attributes. We also track if the corresponding inline script
has been executed. If not, we do not consider the script as a deleted
script. Further, the inline scripts embedded in HTML attributes
can also be indirectly deleted by deleting their host attributes’ host
elements. Therefore, when an element is being deleted from the
DOM tree, we additionally check if it contains any embedded inline
scripts. The check is also recursively applied to any child elements
that are being deleted together.

4.5 Sensitive API Access Monitoring
We suspect that some scripts use self-deletion for hiding their sus-
picious or even malicious behaviors from the users and reducing
the chances of being discovered by researchers. Therefore, we also
dynamically monitor the operations of JavaScript code. This further
enables us to study the connection between the uses of the self-
deletion technique and suspicious activities in §6. Our dynamic API
monitoring method can overcome the limitation of static methods
in analyzing obfuscated code, which makes it difficult to detect the
(sensitive) API access patterns.

We focus on two classes of sensitive browser APIs, together with
network access APIs in our research.

The first class of sensitive APIs is related to client-side storage.
The JavaScript security policy permits all scripts running in the
same frame to access these storages associated to the frame. The
client-side storage in modern browsers includes Cookies, LocalStor-
age, SessionStorage, IndexedDB 3 They can be used for storing sen-
sitive user data, such as Cookies, account credentials, etc. Therefore,
the accesses to the storage APIs are sensitive, yet not necessarily
suspicious because the first-party scripts may need the access to
provide the necessary functionalities. However, the accesses made
by third-party scripts could be suspicious, especially by the self-
deleting scripts. Therefore, we monitor all scripts’ accesses to those

2https://dom.spec.whatwg.org/#concept-event-listener-inner-invoke
3WebSQL had been deprecated by the W3C.

APIs, including the call stack snapshot, script ID and arguments,
for further analysis.

The second class of APIs is privacy-sensitive. There exist many
browser APIs that can reveal sensitive information about the user
and/or the device. Some APIs might even be exploited for side-
channel attacks [24, 26] that can leak sensitive user information
such as phone image or browsing history. For example, the Navigator.
getBattery()method provides information about the system’s battery.
It has been shown that the battery capacity, as well as its level,
expose a fingerprintable surface that can be used to track web users
in short time intervals [27]. Some sensitive APIs like MediaDevices.
getDisplayMedia require the user to explicitly grant the permission; we
do not monitor the uses of such APIs.

Additionally, we monitor APIs that can make requests or send
data to other websites, such as XMLHttpRequest. Since it is difficult
to perform dynamic taint analysis in browsers and the data sent
might be encrypted, we currently do not track the data flow from
other sensitive APIs. Alternatively, we utilize this as an indicator to
demonstrate that the script has a proclivity to access the network
when invoking certain sensitive APIs.

4.6 Implementation
We implemented a prototype of JSRay based on the Chromium
browser version 96.0.4664.45. We modified its rendering engine and
the V8 JavaScript engine using about 700 lines of C++ code. The
monitored operations are logged in files for offline analysis. We
release the source code [36] for facilitating the research in client-
side JavaScript.

5 MEASURING SCRIPT DELETION IN THE
WILD

In this section, we apply our script-deletion detection system in
a large-scale measurement of one-million popular websites to
study the prevalence of script deletion behaviors in the real world.
Through the measurement, we hope to first answer the following
research questions:
• RQ1: how widely the script deletion technique has been adopted
in real websites;

• RQ2: whether most scripts are deleted by themselves;
• RQ3: which kind of scripts are deleted.
We will further analyze the script deletion behaviors and their
security implications in §6.

5.1 Experiment Setup and Dataset
We apply JSRay to detect script deletion on the top one million
domains in the Tranco list [21], which is a top domain list that
has been commonly used in web security research. To automate
the measurement, we drive 20 JSRay instances in parallel using
Selenium 4 to visit the main page of each website on the list. In
our experiment, we try to load a web page within a 30-second
timeout in one attempt and will give up on visiting a website after
three failed attempts. If a page can be loaded within 30 seconds,
we collect the monitoring data for 10 seconds and clear the user
profile. During the visit, we do not generate any user actions on the

4https://www.selenium.dev/

https://dom.spec.whatwg.org/#concept-event-listener-inner-invoke

WWW ’24, May 13–17, 2024, Singapore, Singapore Xinzhe Wang, Zeyang Zhuang, Wei Meng, and James Cheng

page to collect the default behaviors of the automatically-executed
scripts. The experiment was performed in May 2023.

We were able to collect valid data from 870,734 websites (87.1%)
in our measurement. The remaining websites include 90,486 that
cannot be resolved by DNS or reset our connection, 14,275 that
timed out before we received any response, and 24,505 that encoun-
tered other errors from our network location. We were temporarily
blocked by some CDNs as we might have visited many websites
hosted by the same CDNs in a short period time. Nevertheless, we
believe that the 87.1% coverage of the top one-million domains is
sufficient for our research.

5.2 Ethical Considerations
During the evaluation, each website was visited for at most three
times even when errors occurred. We only visited the home page
of a website without scanning any sub-pages, performing any in-
teractions (e.g., clicks) or explicitly making any additional requests.
Our parallel instances were limited to 20. We finished the exper-
iment in 171 hours, suggesting that we actually visited about 97
websites in parallel per minute on average. We believe our method
was non-intrusive and had negligible influence on the websites.

5.3 Prevalence of Script Deletion
We find that script deletion is common in the real world and most
deleted scripts are self-deleting scripts. JSRay detected in total
5,089,340 script deletions on 369,525 websites, or 42.44% of the 870K
reachable websites. These deletion operations are from 761,240
scripts, and 240,478 unique ones deduplicated by the hash value of
the source code. Among the 5,089,340 deletion operations, 1,596,796
(31.38%) were self-deletion, which were found on 226,854 (61.39%)
websites. The operations come from 311,402 scripts and 142,557
unique ones. We further categorize script deletion into the four
classes defined in §3.1. Among all these deletions, 1,451,167 (28.51%)
scripts were deleted by themselves; 142,697 (2.80%) scripts were
deleted by ancestor scripts; 2,932 (0.06%) scripts were deleted by
descendant scripts; and 3,492,544 (68.62%) scripts were deleted by
other irrelevant scripts.

It is a bit surprising that about 69% of the deletions were in the
fourth class. We try to understand why those scripts were deleted
by scripts without inclusion dependency. We further group the
deletions by the privilege (e.g., first-party or third-party) of the
deleting script and the deleted script in Table 2 in the Appendix.
We find that in about half (54.07%) of the fourth-class deletions the
deleting script was a first-party script. Since all (third-party) scripts
are indirectly included by the first-party developers who should
have full control of the web page, it is understandable that a third-
party script might be deleted by another first-party script that does
not directly include the deleted script. For instance, the first-party
developer may use one script to include some other scripts, and use
another one to delete the included scripts. Nevertheless, there were
still 53,732 (1.54%) cases that a third-party script was deleted by
another inclusion-independent third-party script. There were also
1,550,328 (44.39%) cases that a first-party script was even deleted by
an inclusion-independent third-party script. By manually analyzing
some of the samples, we find that the third-party deleting scripts
were usually library functions that provided utilities for managing

the DOM tree or the scripts. For example, jQuery provides a lot of li-
brary functions for conveniently manipulating the DOM tree. Many
of the deletions resulted from the calls of such utility functions by
other scripts, which we did not identify as the deleting scripts. This
also suggests that many of the fourth-class deletions could have
actually been classified as self-deletions if we changed the way to
identify the deleting scripts. However, we currently cannot man-
ually confirm that all the 1,550,328 are like these. Additionally, it
is challenging to distinguish whether third-party scripts actually
delete some scripts or just provide functions for other scripts. We
leave it as a future work to distinguish the legitimate library scripts
from the real deleting scripts.

Since more than 30% of the deletions are self-deletions and some
of the 4th class cases might also be self-deletions, we focus on
studying the self-deleting scripts next.

5.4 Characterization of Self-Deletion
We further characterize the self-deletion behaviors with respect to
the distributions of the websites, scripts, and techniques.

5.4.1 Websites with Self-Deleting Scripts. We first study the 226,854
websites that included self-deleting scripts. We find that these web-
sites are almost uniformly ranked—we do not observe that some
particular ranking group contains more websites than other groups.

However, we do observe that the websites might include quite
different numbers of such scripts. We show the average number of
included self-deleting scripts of websites in each ranking group in
Figure 1 in the Appendix. The size of the ranking group is 10,000.
In general, there were more self-deleting scripts in more popular
websites: the websites in the highest ranked group had on average
2.70 self-deleting scripts, while the ones in the lowest ranked group
had only 1.38 such scripts on average. One possible explanation is
that the popular websites included more scripts. In other words,
the numbers of self-deleting script are positively correlated with
the numbers of all included script on the websites.

5.4.2 Self-Deleting Scripts. Next, we study if most of the self-
deletions were related to a small group of scripts, that might be
included by many websites. This is likely because we find deletions
from 311,402 scripts, while the unique ones are only 142,557. We
find that 95.61% of the scripts were found on only one website and
the rest 6,262 scripts constituted 57.47% of the self-deletion cases.
This explains why the number of self-deletions is much larger than
the unique number of the self-deleting scripts.

The top self-deleting script from www.googletagmanager.com
was included by 47.28% of the websites. It alone accounted for
475,056 (29.75%) self-deletions in our dataset. This Google Tag Man-
ager script provides service for managing custom tags (scripts) used
for advertising, remarketing, analytics, etc. It allows developers to
insert customized scripts into the page by using an individual <script
> tag. However, it is commonplace for developers to remove the tag
after the injection in order to maintain the structure of the original
DOM tree for the sake of compatibility (§6.1). We further discover
that the Google Tag Manager script was the only self-deleting script
on 73,197 websites.

5.4.3 Self-Deleting Techniques. We investigate the techniques that
were used for script self-deletion by different kinds of scripts and

www.googletagmanager.com

Detecting and Understanding Self-Deleting JavaScript Code WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 1: Breakdown of script self-deletions grouped by deletion tech-
nique (Element/Attribute), script privilege (1P/3P) and script inclu-
sion method (Static/Dynamic).

Deletion Group #Cases %Cases #Websites %Websites
Element/Static 793,281 49.68 146,771 64.70
Element/1P-Static 237,154 14.85 26,891 11.85
Element/3P-Static 556,127 34.83 119,880 52.84
Element/Dynamic 154,769 9.69 60,845 26.82
Element/1P-Dynamic 71,318 4.47 21,077 9.29
Element/3P-Dynamic 83,451 5.23 39,768 17.53
Attibute/Static 642,435 40.23 79,634 35.10
Attibute/1P-Static 406,976 25.49 59,863 26.39
Attibute/3P-Static 235,459 14.75 19,771 8.72
Attibute/Dynamic 6,311 0.40 1,310 0.58
Attibute/1P-Dynamic 6,207 0.39 1,289 0.57
Attibute/3P-Dynamic 104 0.01 21 0.01

different privileges. Accordingly, we classify the self-deletion cases
into eight groups and list the results in Table 1. Note that one
website may contain multiple types of cases, therefore the total
percentage of websites in all groups is over 100%.

First, we find that the scripts were more frequently deleted by
deleting their host elements. They constitute 59.37% of the cases.
Second, most websites include self-deleting scripts hosted at third-
party servers. Across all technique and inclusion groups, there are
more third-party scripts than first-party scripts. Third, most of the
deleted scripts were statically included into the websites, regard-
less of their privilege level and the kind of their host containers.
Since dynamic scripts are more difficult to write and debug, it is
reasonable that most of the scripts are static ones. However, it is
alarming that the existence of these dynamically included and then
automatically deleted scripts could hardly be noticed, by not only
normal users but also experienced developers. They neither appear
in the initial HTML source code returned from the first-party server,
nor can be spotted in the rendered DOM tree of the page in the
browser developer tool panel. We even discovered cases where a
group of scripts were iteratively included through multiple layers
and the first script deleted the deeply nested innermost scripts. This
makes it very difficult to completely analyze the behaviors of such
scripts.

In summary, our results show that self-deletion is quite com-
mon on the web. Since it is also a very powerful client-side anti-
analysis technique, we demonstrate the strong need of the dynamic
JavaScript monitoring systems like JSRay for web security research
and client-side JavaScript analysis.

6 UNDERSTANDING SCRIPT SELF-DELETION
We have shown that script deletion especially self-deletion was
common in real websites. In this section, we aim to study why the
self-deletion technique was used by web developers. In particular,
we would like to understand whether those self-deleting scripts
were connected to suspicious activities. To this end, we first conduct
a manual code analysis to figure out deleted contents and explain
the reasons for script self-deletion (§6.1). As we discussed in §2.1,
the suspicious or malicious scripts we targeted on differ from that
of traditional malicious JavaScript detectors. We then leverage our
sensitive API monitoring data and existing popular filter lists to

study if self-deleting scripts perform much more suspicious behav-
iors than other normal scripts §6.2. We will discuss an interesting
case of self-deleting scripts in the Appendix (Appendix B).

6.1 Deleted Contents and Deletion Reasons
We are quite interested in answering what are deleted and why
so many scripts employed self-deletion. Because of the limitation
of existing malware analysis tools (§3.3), we manually analyzed a
small set of 600 unique randomly sampled self-deleting scripts from
600 unique third parties. Specifically, we read the logged source
code of the deleted scripts and the corresponding deleting scripts.
We also check how they interacted with the embedding web page
and other scripts. It took 40 hours to complete the manual analy-
sis. Two authors classified the scripts independently and resolved
inconsistent labels through discussion. An automated method to
detect malicious scripts may facilitate our analysis, but is an or-
thogonal and challenging research problem. Due to the difficulty
of client-side JavaScript code analysis, we do not claim that our
explanation correctly reflects the real intention of the developers.
Rather, we hope that our initial manual investigation could shed
light on this emerging problem and facilitate future research.
Hiding/Cleaning benign code. First, we discover that the major-
ity (552 or 92%) of the 600 scripts were benign code. Developers can
use this technique to clean up temporary code and/or protect their
intellectual property. Temporary code refers to first or third-party
scripts that are dynamically loaded and executed only once upon
creation (but might be createdmultiple times). It is no longer needed
after the execution. Developers include temporary code to provide
support for customized contents by invoking the eval() function or
embedding a <script> tag onto the page. However, creating a new
<script> tag changes the structure of the DOM nodes. It may cause
some compatibility issues if other scripts rely on the DOM structure
to select the necessary nodes. Therefore, developers tend to initia-
tively remove the <script> tag once inserted. For instance, the jQuery
library has a method html() that helps developers to insert HTML
fragments. However, according to the WHATWG standard 5, script
elements do not execute when parsing the fragments. This indicates
that methods like innerHTML cannot execute any embedded script tags,
which is inconvenient in some cases. jQuery extends the method
by inspecting the content and leveraging a DOMEval function 6 to exe-
cute the scripts. The function generates a new <script> tag and uses
doc.head.appendChild(script).parentNode.removeChild(script); to append the
script to the <head> element and remove it immediately to prevent
any side effect upon returning. Therefore, executing the embedded
scripts in this manner does not introduce any side effects to the
final DOM, such as a new child being appended to the <head> ele-
ment. Please note that the developers do not provide an explanation
for why they made this design decision, but we believe that our
interpretation is the most convincing explanation. It can also be
considered as a common and legitimate modern software develop-
ment practice to protect one’s own software from being copied and
plagiarized. By applying self-deletion alone or together with code
obfuscation and other anti-analysis techniques, the developers can

5https://html.spec.whatwg.org/#other-parsing-state-flags
6https://github.com/jquery/jquery/blob/main/src/core/DOMEval.js

WWW ’24, May 13–17, 2024, Singapore, Singapore Xinzhe Wang, Zeyang Zhuang, Wei Meng, and James Cheng

prevent most users from locating the core code and increase the
difficulty of reverse engineering.
Hiding suspicious activities. Second, 48 (8%) scripts deleted
themselves also for preventing code analysis but performed suspi-
cious or even malicious operations, including accessing and stealing
user credentials stored in client-side storage, tracking user activities
without user consent, or making profits through immoral ways (e.g.,
malvertising [22]). Even though some of the suspicious activities
could be noticed by the victim users, it is difficult to identify the
culprit scripts which were removed from the DOM tree. Like le-
gitimate scripts, these suspicious scripts could also leverage other
anti-analysis techniques to further escape the detection of their
suspicious behaviors. As a comparison, we further analyzed another
600 unique randomly sampled normal scripts without deletion us-
ing the same criteria. We revealed that normal scripts were rarely
associated with suspicious or malicious activities as only 4 (<1%)
scripts were found to be suspicious,

In summary, we find that most scripts deleted themselves for le-
gitimate purposes like code cleaning, yet the self-deletion technique
has also been used for hiding suspicious/malicious script behav-
iors. This motivates us to further study the connection between
self-deleting scripts and suspicious operations next.

6.2 Self-Deletion and Suspicious Activities
Our manual analysis revealed that some scripts hid their suspicious
behaviors by deleting themselves. We leverage the sensitive API
monitoring data and a popular filter list to study the behavior
difference between self-deleting scripts and the normal scripts.
Since Google Tag Manager allows the user to embed custom scripts,
these sensitive API accesses are counted from the custom scripts
instead of GTM itself. Specifically, we sample 226,854 websites that
did not contain script deletion and use all their executed scripts as
the normal script dataset, which contains 3,223,953 scripts in total.

We monitored two classes of sensitive APIs, together with net-
work access APIs in our system §4.5. The results are shown in
Table 3 in the Appendix. We observe that the normal scripts made
on average 2.38 sensitive API accesses, which is much smaller than
the average number of accesses—28.12—made by the deleting and
deleted scripts across all groups. This demonstrates that the self-
deleting scripts in general were more likely to access sensitive data
in the browser. By employing the self-deletion technique as an
anti-analysis method, their accesses are much more suspicious. The
average number of network access APIs made by the self-deleting
scripts (0.877) is also 6.1x more than the normal ones (0.143). This
suggests that their accesses have a propensity to coincide with
network requests, which could potentially result in data leakage.

We then use EasyList 7, one of the most popular filter lists used
for blocking unwanted web content such as advertisements and
trackers, as the ground truth to study whether self-deleting scripts
are more likely to be blocked than normal scripts. The result shows
that 124,386 (39.94%) self-deleting scripts are among the block list,
compared to 229,738 (7.13%) normal scripts. It indicates that self-
deleting scripts are much more likely to be blocked by filter lists.
In other words, they are more likely to be related to unwanted web
content that many users would like to block.
7https://easylist.to/, version 202306271740 with EasyPrivacy

In summary, we discover that the self-deleting scripts made
more accesses to sensitive browser APIs on average than the normal
scripts. They are also 5.6x more likely to be included in popular filter
lists. Although not all the accesses are necessarily malicious, the
uses of script deletion technique increase the difficulty in analyzing
their operations. Our research makes an important first step in
understanding their behaviors, and lays the necessary foundation
for future research.

7 RELATEDWORK
Anti-Analysis Techniques. Malware developers embed mul-
tiple anti-analysis techniques in their code to retard the analy-
sis processes by analysts and sandboxes [18]. Malware with self-
deletion [6] is an application of anti-analysis technique. Advanced
persistent threat (APT) groups [1] are known to conduct targeted
campaigns and then self-delete the deployed malware. It involves
Anchor [4], which is a backdoor used selectively on high-profile tar-
gets that can self-delete its dropper. Some suspicious self-deleting
scripts will incorporate obfuscation technique, which is also an
anti-analysis method [8, 31]. Marius et al. [25] introduces 9 anti-
debugging techniques and discusses their advantages and draw-
backs. In this work, we analyzed the suspicious behavior of self-
deleting JavaScript, which is also an anti-analysis technique.
JavaScript Analysis. Many researchers have contributed to
JavaScript analysis. Richards et al. [29] focused on the security risks
by using the eval() function. Lauinger et al. [20] introduced causal-
ity trees to describe the inclusion relationships. Other researchers
improved techniques to further study the inclusion relations and
explore the maliciousness in inclusion chains [12, 33, 35]. But all
these works fail to track the origins of all kinds of scripts such as
those which don’t have a source URL or are dynamically generated.
Zhang et al. [39] proposed JSIsolate, which provides an isolated
JavaScript execution environment and studies the dependency re-
lationship between scripts. Based on the JSIsolate technique, we
further studied script deletion behaviors. The main ideas of these
works are orthogonal to our focus on self-deleting JavaScript.

8 CONCLUSION
In this paper, we systematically studied the current client-side
JavaScript self-deletion behavior in the real world. We overcame
several challenges in studying the dynamic behaviors of JavaScript
programs, and developed JSRay, a browser-based JavaScript run-
time monitoring system. With JSRay, we conducted a large scale
measurement of one million websites. Our experiment results re-
vealed that script self-deletion is quite common in the real world,
and that self-deletion has already been employed for hiding suspi-
cious operations in client-side JavaScript. Our work demonstrated
the strong need of the dynamic JavaScript monitoring systems like
JSRay for web security research.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for their
helpful suggestions and comments. Thework described in this paper
was partly supported by a grant from the Research Grants Council
of the Hong Kong SAR, China (Project No.: CUHK 14209323).

Detecting and Understanding Self-Deleting JavaScript Code WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Atif Ahmad, Jeb Webb, Kevin C Desouza, and James Boorman. 2019. Strategically-

motivated advanced persistent threat: Definition, process, tactics and a disinfor-
mation model of counterattack. Computers & Security 86 (2019), 402–418.

[2] Kyu Hyung Lee Bo Li, Phani Vadrevu and Roberto Perdisci. 2018. JSgraph:
Enabling Reconstruction ofWeb Attacks via Efficient Tracking of Live In-Browser
JavaScript Executions. In Proceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS). San Diego, CA, USA.

[3] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert.
2011. ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection. In
Proceedings of the 20th USENIX Security Symposium (Security). San Francisco, CA,
USA.

[4] Cybereason Nocturnus. 2019. Dropping Anchor: From a Trick-
Bot Infection to the Discovery of the Anchor Malware. https:
//www.cybereason.com/blog/research/dropping-anchor-from-a-trickbot-
infection-to-the-discovery-of-the-anchor-malware.

[5] Priyanka Dodia, Mashael AlSabah, Omar Alrawi, and Tao Wang. 2022. Exposing
the Rat in the Tunnel: Using Traffic Analysis for Tor-Based Malware Detection.
In Proceedings of the 29th ACM Conference on Computer and Communications
Security (CCS). Los Angeles, CA, USA.

[6] Adam Duby, Teryl Taylor, Gedare Bloom, and Yanyan Zhuang. 2022. Detecting
andClassifying Self-DeletingWindowsMalware Using Prefetch Files. In 2022 IEEE
12th Annual Computing and Communication Workshop and Conference (CCWC).
IEEE, 0745–0751.

[7] Yong Fang, Cheng Huang, Yu Su, and Yaoyao Qiu. 2020. Detecting malicious
JavaScript code based on semantic analysis. Computers & Security 93 (2020),
101764.

[8] Aurore Fass, Michael Backes, and Ben Stock. 2019. HideNoSeek: Camouflaging
malicious javascript in benign asts. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS). London, UK.

[9] Aurore Fass, Michael Backes, and Ben Stock. 2019. Jstap: A static pre-filter
for malicious javascript detection. In Proceedings of the 35th Annual Computer
Security Applications Conference (ACSAC). San Juan, PR, USA.

[10] Aurore Fass, Robert P Krawczyk, Michael Backes, and Ben Stock. 2018. Jast: Fully
syntactic detection of malicious (obfuscated) javascript. In Proceedings of the 15th
Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA). Paris, France.

[11] Xunchao Hu, Yao Cheng, Yue Duan, Andrew Henderson, and Heng Yin. 2017.
JSForce: A Forced Execution Engine for Malicious JavaScript Detection. In Se-
cureComm.

[12] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha
Loizon, and Roya Ensafi. 2019. The Chain of Implicit Trust: An Analysis of
the Web Third-Party Resources Loading. In Proceedings of the Web Conference
(WWW). San Francisco, CA, USA.

[13] Microsoft Security Intelligence. 2017. TrojanDownloader:Win32/Nemim.gen!A.
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=TrojanDownloader:Win32/Nemim.gen!A.

[14] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser Mon-
itoring of JavaScript in the Wild. In Proceedings of the ACM Internet Measurement
Conference (IMC).

[15] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal
Shankar, Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. [n. d.]. Better
Malware Ground Truth: Techniques for Weighting Anti-Virus Vendor Labels. In
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security (AISec
’15). 45–56.

[16] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the Gordian Knot: A Look Under the Hood of Ransomware
Attacks. In Detection of Intrusions and Malware, and Vulnerability Assessment.
3–24.

[17] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-Force: Forced Execution on JavaScript.
In Proceedings of the 26th International World Wide Web Conference (WWW).
Perth, Australia.

[18] Minho Kim, Haehyun Cho, and Jeong Hyun Yi. 2022. Large-Scale Analysis
on Anti-Analysis Techniques in Real-World Malware. IEEE Access 10 (2022),

75802–75815.
[19] Amit Klein and Benny Pinkas. 2019. DNS Cache-Based User Tracking.. In Pro-

ceedings of the 2019 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA, USA.

[20] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the Use
of Outdated JavaScript Libraries on the Web. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS). San Diego, CA, USA.

[21] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 2019 Annual Net-
work and Distributed System Security Symposium (NDSS). San Diego, CA, USA.

[22] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2012. Know-
ing Your Enemy: Understanding and Detecting Malicious Web Advertising. In
Proceedings of the 2012 ACM conference on Computer and communications security.

[23] Peter Likarish, Eunjin Jung, and Insoon Jo. 2009. Obfuscated malicious javascript
detection using classification techniques. In 2009 4th International Conference on
Malicious and Unwanted Software (MALWARE). 47–54.

[24] Moritz Lipp Michael Schwarz and Daniel Gruss. 2018. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks. In Proceedings of the 2018 Annual
Network and Distributed System Security Symposium (NDSS). San Diego, CA,
USA.

[25] Marius Musch and Martin Johns. 2021. U Can’t Debug This: Detecting JavaScript
Anti-Debugging Techniques in the Wild. In Proceedings of the 30th USENIX
Security Symposium (Security). Virtual Event.

[26] Lukasz Olejnik. 2017. Stealing sensitive browser data with the W3C Ambient
Light Sensor API. https://blog.lukaszolejnik.com/stealing-sensitive-browser-
data-with-the-w3c-ambient-light-sensor-api/.

[27] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2016. The
Leaking Battery. In Data Privacy Management, and Security Assurance. 254–263.

[28] H. Petrak. 2021. Javascript Malware Collection. https://github.com/HynekPetrak/
javascript-malware-collection.

[29] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The eval
that men do. In European Conference on Object-Oriented Programming. Springer,
52–78.

[30] Asuman Senol, Gunes Acar, Mathias Humbert, and Frederik Zuiderveen Borge-
sius. 2022. Leaky Forms: A Study of Email and Password Exfiltration Before Form
Submission. In Proceedings of the 31st USENIX Security Symposium (Security).
Boston, MA, USA.

[31] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything
to hide? studying minified and obfuscated code in the web. In Proceedings of the
Web Conference (WWW). San Francisco, CA, USA.

[32] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis. 2021. Tales
of favicons and caches: Persistent tracking in modern browsers. In Proceedings of
the 2021 Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA, USA.

[33] Marius Steffens,MariusMusch,Martin Johns, and Ben Stock. 2021. Who’s Hosting
the Block Party? Studying Third-Party Blockage of CSP and SRI. In Proceedings
of the 2021 Annual Network and Distributed System Security Symposium (NDSS).
San Diego, CA, USA.

[34] Marius Steffens and Ben Stock. 2020. PMForce: Systematically Analyzing postMes-
sage Handlers at Scale. In Proceedings of the 27th ACM Conference on Computer
and Communications Security (CCS). Orlando, FL, USA.

[35] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. 2020. Be-
yond the Front Page:Measuring Third Party Dynamics in the Field. In Proceedings
of the Web Conference (WWW). Taipei, Taiwan.

[36] Xinzhe Wang, Zeyang Zhuang, Wei Meng, and James Cheng. 2024. JSRay: Self-
Deleting JavaScript Code Monitor. https://doi.org/10.5281/zenodo.10676966

[37] WHATWG. 2022. HTML Standard. https://html.spec.whatwg.org/.
[38] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2013. Jstill: mostly static detection of

obfuscated malicious javascript code. In Proceedings of the third ACM conference
on Data and application security and privacy. 117–128.

[39] Mingxue Zhang and Wei Meng. 2021. JSISOLATE: Lightweight In-Browser
JavaScript Isolation. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). Athens, Greece.

https://www.cybereason.com/blog/research/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://www.cybereason.com/blog/research/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://www.cybereason.com/blog/research/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Nemim.gen!A
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Nemim.gen!A
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://doi.org/10.5281/zenodo.10676966
https://html.spec.whatwg.org/

WWW ’24, May 13–17, 2024, Singapore, Singapore Xinzhe Wang, Zeyang Zhuang, Wei Meng, and James Cheng

Table 2: Breakdown of the 4th class deletions by privilege group.
1P/3P denotes the first-party/third-party script.

Group #Cases %Cases #Websites %Websites
1P deleting 1P 1,871,822 53.59 137,621 41.23
3P deleting 3P 53,732 1.54 8,387 2.51
1P deleting 3P 16,662 0.48 1,882 0.56
3P deleting 1P 1,550,328 44.39 185,898 55.69

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Website Rank 1e6

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Av
er
ag
e
N
um

be
r
of

Sc
ri
pt
s

Figure 1: Average number of self-deleting scripts across websites in
different ranking groups.

Table 3: Sensitive API accesses (Average/Average with network ac-
cess).

Group Total #Storage #Privacy
1P deleting 1P 5.10/3.46 4.60/3.05 0.50/0.41
- Deleted script 2.40/1.62 2.17/1.43 0.23/0.19
- Deleting script 2.70/1.84 2.43/1.62 0.26/0.22
3P deleting 3P 47.43/28.41 44.33/26.71 3.10/1.71
- Deleted script 23.72/14.21 22.17/13.35 1.55/0.85
- Deleting script 23.72/14.21 22.17/13.35 1.55/0.85
1P deleting 3P 0/0 0/0 0/0
3P deleting 1P 3.70/2.44 3.34/2.19 0.37/0.25
- Deleted script 0.01/<0.01 0.01/<0.01 <0.01/<0.01
- Deleting script 3.69/2.44 3.33/2.19 0.36/0.25
Normal script 2.38/1.17 1.82/0.96 0.56/0.21
- First party 0.94/0.61 0.72/0.50 0.22/0.11
- Third party 1.43/0.56 1.10/0.46 0.33/0.10

Table 4: Systematization of BADTs. The goals are to Impede dynamic
analysis, subtly Alter its results and Detect the presence of the anal-
ysis. A filled circle means the property fully applies, a half-filled
circle means it applies with limitations.

Technique Goal Effective Stealthy Versatile Resilient
SelfDeletion A/I
ShortCutx I
TrigBreak I
ConClear I
ModBuilt A/I
WidthDiff D
LogGet D

A SECURITY IMPACT ANALYSIS
We present the detailed analysis of the security impact of script
self-deletion here.

A.1 BADT Classification
We examine self-deletion and compare it with 6 known BADTs
systemized in the prior work [25]. The results are shown in Table 4.

Self-deletion is effective for hiding scripts because their DOM nodes
are removed from the DOM tree and cannot be easily recovered. The
browser does not prompt any notice to users or throw any warnings
when the scripts are removed from the DOM tree. Furthermore, as
we have shown in §3.2, there are plenty of variants of this technique.
There is no good mechanism to prevent the deletion operation or
recover the deleted scripts. The trace left by a self-deleting script can
only be observed in the incoming network responses, which may
contain many different scripts and other web contents. Given that
the self-deleting scripts can be dynamically generated via methods
like eval(), this further makes the identification and analysis of the
self-deleting script quite challenging.

A.2 Studying Script Self-Deletion Using Existing
Malware Detection and Analysis Tools

We use two widely used and publicly available tools to study the
self-deletion technique: VirusTotal 8 and HybridAnalysis 9. VirusTo-
tal is an online solution which aggregates the scanning capabilities
provided by 89 anti-virus tools, scanning engines, and datasets. It
has been commonly used in prior works [12, 15, 16]. HybridAnaly-
sis is another online sandbox widely used by researchers and the
industry to conduct malware analysis research and investigation [5].
It loads a target URL in the browser process running in the sandbox
and monitors the process’s suspicious behaviors such as file system
accesses.

We manually selected and analyzed 20 malicious examples from
Hynek Petrk JavaScript malware collection [28]. We embedded the
malicious code in inline <script> tags of the HTML code. All of the
samples were identified and marked as Malicious by both detectors,
serving as the baseline for our analysis. After experimenting with
different script inclusion and deletion methods, we found that the
popular malware analysis tools have the following limitations.
• Ineffective static analysis technique. VirusTotal collects re-
sults from many static analysis tools, which rely on traditional
blacklist or code fingerprinting techniques. They can be easily
bypassed by changing the script source URL or applying code ob-
fuscation, making them ineffective in detecting malicious scripts.
This indicates that the vendors used by VirusTotal rely solely
on the static blacklist technique to identify malicious URLs. In
contrast, HybridAnalysis was able to successfully identify the
malicious code because it actually fetched and analyzed the script
source code.

• Coarse-grained malicious behavior attribution. The dy-
namic malware analysis tool HybridAnalysis employs a tradi-
tional process monitor mechanism to detect and report malicious
behaviors for the entire website or file. However, we found that it
was unable to attribute the malicious behaviors to specific scripts.
Such coarse-grained attribution would be undesirable as secu-
rity analysts need to perform additional heavy manual analysis
to identify the real culprits, which are mixed with numerous
JavaScript code and other web contents on the page. Script self
deletion would significantly complicate such expensive manual

8https://www.virustotal.com/
9https://www.hybrid-analysis.com/

Detecting and Understanding Self-Deleting JavaScript Code WWW ’24, May 13–17, 2024, Singapore, Singapore

analysis for locating the malicious scripts that delete themselves
from the DOM tree.

• Limited scope ofmonitored behaviors. Behaviors reported by
HybridAnalysis are limited to traditional malicious ones such as
reading or writing the file system, and changing system registry
records. These malicious operations can be hardly performed in
modern browsers that implement various security mechanisms.
The more relevant malicious behaviors, such as personal data
exfiltration and leakage, are not covered by it.

1 var track = function (m, query) {
2 var projectId = 601;
3 var url = "https://t.rainide.com/" + projectId + "?metric="

+ m + "&value=1&hostname=" + location.hostname + "&" +
query,

4 script = document.createElement("script"),
5 id = '_' + Math.random().toString(36).substr(2, 9);
6 script.setAttribute("src", url);
7 script.setAttribute("async", !0);
8 script.setAttribute("id", id);
9 try {
10 script.addEventListener("load", function () {
11 var el = document.getElementById(id);
12 el && (el.remove ? el.remove() : el.parentNode &&

el.parentNode.removeChild(el))
13 })
14 } catch (ex) {}
15 document.head.appendChild(script);
16 };
17 /* some supporting functions */
18 track('pingMe', /*sensitive data*/);
19 window.addEventListener("load", function (event) {
20 /* get metrics and statistics */
21 track('pingMePushka', /*sensitive data*/);
22 track('superTimings', jsonToQueryString(window.performance.

timing.toJSON()));
23 });
24 /* redirect to promotion link */

Listing 1: Part of self-deleting scripts from https://goldclassmusic.
com (recovered).

B CASE STUDY
We discuss one interesting self-deleting case we detected to help
further illustrate the use of self-deletion technique in the real world.
We suspect that the case was related to malvertising and user data
collection without user consent.

In our experiment, we found a group of websites that embed-
ded similar self-deleting scripts. These self-deleting scripts would
redirect the visitors of the embedding sites to other landing pages
to promote other contents, of which some were malicious, such as
malware or online scams. We thought that these websites partic-
ipated in the same online promotion/advertising network which
provided the self-deleting redirection scripts for making profits.
We were able to reconstruct all the deleted scripts and hence study
their activities with the help of JSRay.

We present one example of such self-deleting scripts in Listing 1.
The original scripts were obfuscated and they leveraged eval() to
dynamically execute additional code. The script implements a track
() function to send sensitive user data (e.g., the hostname of the
page the user is visiting) it collects to the server of the promotion
network—https://t.rainide.com/. It dynamically loads a new script
from the server by attaching the sensitive user data as request
parameters. It then automatically deletes the newly included script
by listening for the "load" event of the script (lines 9-14). Finally, the
script redirects the user to the product link automatically.

To hide its operations, in addition to self-deletion, this script
employed multiple anti-analysis techniques such as dynamic code
generation using eval() and code obfuscation, including string re-
moval, variables renaming, etc. The snippet shown in Listing 1 was
actually generated via eval(). Consequently, a victim user cannot
easily notice those hidden suspicious behaviors.

https://goldclassmusic.com
https://goldclassmusic.com
https://t.rainide.com/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Research Scope and Assumptions
	2.2 Research Challenges

	3 Script Deletion
	3.1 Classes of Script Deletion
	3.2 Script Deletion Techniques
	3.3 Security Impact

	4 Detecting Script Deletion
	4.1 Overview
	4.2 Dynamic Script Inclusion Monitoring
	4.3 JavaScript and DOM Mapping
	4.4 Script Deletion Monitoring
	4.5 Sensitive API Access Monitoring
	4.6 Implementation

	5 Measuring Script Deletion in the Wild
	5.1 Experiment Setup and Dataset
	5.2 Ethical Considerations
	5.3 Prevalence of Script Deletion
	5.4 Characterization of Self-Deletion

	6 Understanding Script Self-Deletion
	6.1 Deleted Contents and Deletion Reasons
	6.2 Self-Deletion and Suspicious Activities

	7 Related work
	8 Conclusion
	References
	A Security Impact Analysis
	A.1 BADT Classification
	A.2 Studying Script Self-Deletion Using Existing Malware Detection and Analysis Tools

	B Case Study

